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1.0 Preliminaries
1.1 Definition of Scientific Problem:

Given state-of-the-art device and material capabilities in wavelength and timing diversity for
optical fiber communications, how can the data rate be maximized, so that large arrays,
images., etc. can be transmitted in a timely fashion to the maximum number of users at
acceptable probability of error, and real time (> 30 fps) and interactive video be achieved?

1.2 The Aim

The discussion of the results to follow is facilitated by use of the following nomenclature.
Referring to Fig. 1.2.1, orthogonal codes are defined over a superframe of slots. A single
pulse occurs only once per frame and the complete pulse code sequence is transmitted over
the total time of the superframe of frames.

Slot Size =T
Frame Length
t=3T
B s
Superframe Length
T=3Xt

Fig. 1.2.1 Orthogonal codes are defined over a superframe of frames. A pulse of each orthogonal code occurs
only once per frame and the total code sequence of pulses occurs completely over the superframe time. In
this example, the frame size is 10 slots and there are 10 frames, so the size of the superframe is 100 slots.
Therefore a complete orthogonal code is 10 pulses spread over the superframe time.
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Fig. 1.2.2. Graphical representation of the Spread Time Technique with coding at a first stage identifying
the channel and coding at a second stage by, e.g., BPSK, pulse-position modulation, etc. providing data
encoding and error-correction. Here, pulse-position modulation is shown.

Two major types of codes will be discussed below: (1) orthogonal codes; and (2)
error-correcting codes. The orthogonal codes are generated over a matrix field and are
transferred to a time hopping representation by the method shown in Fig. 1.2.3, where a
number of frames of a superframe are shown. The spread time technique reduces noise
during the transmission phase (as does the spread spectrum technique). because after
removal of the spreading code the data is recovered but the noise remains spread.

The work over the past 12 months has confirmed the benefit of a two-stage
hierarchy of codes. In this scheme, the orthogonal codes define the microchannel or user,
and, once a code is identified by a first matched filter, a second matched filter identifies the
data encoded by, e.g., BPSK, pulse-position-modulation, etc., with error correction,
hence error-correcting codes are required for the second stage. The two stages are
represented in Fig. 1.2.3.
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Fig. 1.2.3. Two-stage encoding. The user, or channel is defined by an orthogonal code. A second matched
filter, positioned behind the first, decodes data and applies error-correction. Hence error-correcting codes are
required for the second stage. The word size of the second stage is dependent upon the availability of optical
devices capable of providing, e.g., BPSK or pulse position modulation (PPM), etc., representing n-bit
words. Here, a 16-bit word is shown.

Using the two-stage principle of encoding as well as multidimensional coding, and
presuming device capabilities which are either available now, or being tested in the
laboratory, or might be in the future, predictions can be made concerning the data rate
achievable for high data rate channels. Table 1.2.1 provides those predictions.



The aim of this research is illustrated in the data rates of the following Table 1.2.1 showing channel data rate estimates with two-
level coding & devices and input-output capability assumed§.

Table 1.2.1: An Example Algorithm - Channel Data Rate Estimate with Two-Level Coding & Devices and Input-Output Capability Assumed§
2-bit word 4-bit word 8-bit word

One Code (MicroChannel)
Min. MicroPulse Durat. Assumed 100 femtosec.
MacroPulse & MacroSlot Duration | 1 picosecond
MacroSlot Repetition Frequency 1 TeraHertz
One Code/MicroChannel Data Rate 2 Gigabits/s. 4 Gigabits/s 8 Gigabits/s.
MacroChannel
For a 1021 x 1021 length code:
MacroSiot Rate 1 TeraHertz
Frame Rate 1 GigaHertz
SuperFrame Rate 1 MegaHertz
MicroSlot Duration 500 femtos. 250 femtos. 125 femtos.
Timing Accuracy Required +250 femtos. | £125 femtos. + 62.5 femtos.
One Code/MicroChannel Data Rate 2 Gigabits/s/ 4 Gigabits/s.
1021 Code/MacroChannel 2 Terabits/s. 4 Terabits/s. 8 Terabits/s.
Wavelengths Available (Now) 4 4 Terabits/sec. | 16 Terabits/sec. | 32 Terabits/sec.
Wavelengths Available (Future) 8 8 Terabits/sec. | 32 Terabits/sec. | 64 Terabits/sec.

§ A minimum resolvable micropulse duration of 100 femtoseconds is assumed.
T Shaded columns assume a minimum resolvable micropulse duration of less than 100 femtoseconds.




1.3 State of the Art Benchmark from which BSEI Research Proceeds

The state of the art is to utilize wavelength division multiplexing (WDM) to provide
separate communications channels; and code division multiple access (CDMA) together
with time hopping (TH) to provide multiple access using orthogonal codes.

1.4 Deficiencies in State of the Art Addressed by BSEI Research:

« Good orthogonal codes must possess both good autocorrelation properties (for code lock-
on) and also good crosscorrelation properties (for minimum multiuser crosstalk). These
two necessary properties are in a tradeoff relationship, e.g., some codes possess one
without the other. There is presently no understanding of this tradeoff so that the design of
good orthogonal codes with both desirable properties is presently an empirical pursuit.

+ Good error-correcting codes are also required at a second level in order to provide reliable
communications. Although perfect (because able to correct error patterns at a stipulated
distance) codes are available, they are rare, and those in common use have limitations.
There is presently a need to extend the foundations of error correcting codes so that the
design of perfect codes can be advanced.

« Although WDM has become available, there has been no extension of spread spectrum
techniques to joint time-frequency schemes (i.e., both time and frequency hopping). As in
all spread spectrum techniques, a time-frequency spread spectrum coding would reduce the
probability of error.

« New device technology permits the implementation of new coding schemes, but new
coding schemes justify new device technology. Both the device technology and code
possibilities justify approaches to more efficient communications backbone schemes. This
mutual "cross-fertilization" between device and coding capabilities has not occurred to any
degree.

» Both new hopping codes and device technologies require new device approaches to
timing control and code identification.

1.5 Implementation by BMDO

« In any ballistic missile defense scenario, high data rate communications supporting real-
time interactive imagery are required by Command & Control. Given a physical
infrastructure, the highest data rates can be achieved only by efficient coding techniques.

» In any BMDO test-bed scenario, the test and showcasing of technologies ready for
transition will be dependent upon high data rate communications. Again, given a physical
infrastructure, the highest data rates can be achieved only by efficient coding techniques.

e Dual use: the medical profession is moving from a photographic data capture to an
electronic data capture environment, e.g., the Army's "All Digital Hospital" concept.
Transmission of medical images and large data arrays will test the performance of
communications channels. Therefore high data rates are required and so, again, given a
physical infrastructure, the highest data rates can be achieved only by efficient coding
techniques.



1.6 What is new, innovative in BSEI's research results and what are the
implications?

1.6.1 New and Innovative:
BSEI has

« implemented group theory (Young frame and tableaux) in characterizing code properties
and has used these methods in optimum code design.
« developed a Lexicographic-Greedy Code algorithm for code generation -  Lexicographic-
Greedy codes provide perfect codes.
- implemented Lexicographic constructions for optimum orthogonal codes, not just
error correcting codes.
» demonstrated:
- orthogonal codes as extended cyclic Reed-Solomon an increase in the number of
usable codes (More codes, means higher aggregate data rate).
- inverse constructions extending number of usable codes.
- constructions from a Young tableau diagram formalism for designing optimum
properties
- conjugate constructions using Young tableaux to extend the number of usable
codes
- codes formulated in group symmetry form for attainment of optimum correlation
properties
- application of Lexicographic ordering for achieving optimum orthogonal codes

« utilized the Zech Logarithmic constructions with the normal constructions as basis, by a
new method of deriving a GF(11) field from the GF(2% field. To our knowledge the
generation of codes by these construction methods is original and unique. The number of
codes with good autocorrelation and crosscorrelation properties can be increased by the use
of the Zech Logarithm construction. These new methods provide a fruitful way of doubling
the number of usable codes. As each code provides another user, or channel, their use will
increase the available data rate of information transmission.

» applied optical, analog, Fourier transform principles to determine whether all-optical
methods can be implemented to rapidly detect time hopping codes in optical fibers. The
results obtained are clear-cut. The optical (analog) method according to the results obtained
provides signal-to-noise levels equal to that of electronic (digital) methods. In the case of
the two codes, the Hyperbolic Congruence and the Quadratic Congruence, the results are
superior for both auto- and cross-correlation detection. Furthermore, the cross-correlation
(but not the auto-correlation) of the Welch-Costas codes is known to be inferior, and this is
clearly detected. We also demonstrated that although optical methods can be used to
identify codes in noise, e.g., the noise from other codes, the hub system is ultimately
overwhelmed by that noise. This is because optical methods provide a global (in time)
matched filter which is open to noise interference. An electronic matched filter, on the other
hand, provides local (in time) matched filters which are masked from the noise caused by
the presence of other codes by electronic switching. An electronic matched filter would
provide better performance in the presence of noise due to other codes.

o addressed the underlying group structure of the orthogonal codes: the hyperbolic
congruence, the quadratic congruence, and the Welch-Costas codes. Excellent performance
in the case of one attribute, e.g., auto-correlation, is sometimes associated with poor
performance in the other attribute, e.g., cross-correlation; and reported the Mathematica
algorithmsfor demonstrating the differences in group structure between three types of




orthogonal codes. The superiority of the hyperbolic and quadratic congruence codes in both
auto- and cross-correlation properties, as compared with the superiority of the Welch-
Costas codes in auto-correlation properties, but poor performance in cross-correlation
properties, is clearly mirrored in the lack of symmetry shown by the Welch-Costas codes
by this form of analysis.

« addressed the possibility of increasing data rate in optical fiber communications by using
the method of bit parallel wavelength division (BPWD) which, among other techniques,
utilizes the “shepherding pulse” technique to maintain pulse alignment. Both method and
technique are due to Yeh & Bergman and is based on the cross-phase modulation effect.
Simulation of this technique involves the numerical evaluation of simultaneous coupled
nonlinear Schrédinger equations. These investigators used the split-Fourier method but we
were able to solve the coupled equations using approximation methods. Although
limitations in computer memory precluding our simulating over optical fiber distances
greater than 10 km, we were able to confirm their results.

1.6.2 Implications of this research

« BSEI's work has confirmed the benefit of a two-stage hierarchy of codes. At the first
stage, orthogonal codes define the microchannel or user, identified by a first (temporal)
matched filter. Once a code is identified by this filter, a second (temporal) matched filter
identifies the pulse-position-modulated data with error correction, hence error-correcting
codes are required for the second stage. BSEI has shown that congruence codes have the
best properties for use as orthogonal codes (hyperbolic, quadratic, cubic and quartic) and
Lexicographic codes for error correcting codes.

« Besides a hierarchical backbone topology, a multidimensional coding scheme intermixing
CMDA, TDMA and WDM provides the possibility of the highest data rates.

» These recommended techniques provide signal spreading techniques, but they are spread
time techniques, as opposed to spread spectrum techniques.

» A major part of this study has addressed the impact of symmetry principles on code
design to achieve optimum properties. BSEI has provided many examples of heretofore
unknown symmetries underlying code design. These discoveries impact optimum code
design and hence data rate.

1.8 Future work

(1) Multi-bit words required from devices and addressed by codes

(2) Extend codes from time hopping to time and frequency hopping.

(3) Extend perfect Lexicographic codes for use in both orthogonal code construction and
error correction code construction.

(4) Extend Group theory (Young tableaux approach) constructions into error correcting
code design.




1.9 Future Needs

Generation of Lexicographic codes of only length 10, takes over 36 hours of continuous
run time on a 120 MHz Power Macintosh.

Codes of length 1021 are required, therefore BSEI needs access to more powerful
computational capabilities for implementation of these codes.

BSEI has generated many new ideas concerning code constructions for optimum
properties. Now collaboration is needed with both coding theorists and new device
developers, as well as access to more powerful computational capabilities. Implementation

of these ideas should now take place.




2.0 Summary of Results:

This report summarizes the major results of the study, and which were reported on a
monthly basis throughout the 12-month duration of the contract. Due to the fact that this
investigation produced a rich harvest of new approaches and insights, not all the details of
the results reported monthly can be encompassed in a single final report. Therefore, we
summarize in this section the major results, which are:

2.0.1 We addressed the maximum number of simultaneous users in multiple access and
possible sources of reduction in performance. Using the Gaussian approximation, we
showed that pulse-position modulation accommodates a large number of simultaneous
users at an excellent error probability. There are indicators that the probability of error for
orthogonal codes decreases with (1) an increase in the matched filter threshold and (2) an
increase in code length. However, the simple statement that performance is improved by
increasing the code length and raising the receiver threshold obscures a more subtle
relationship. We showed, in fact, that using more pulses in a code sequence results in
reduction in performance unless the receiver threshold is raised. However, using more
pulses in a sequence does not result in a reduction in performance if the receiver threshold
is raised. We also showed a dramatic degradation in performance of the system when
timing errors are introduced.

2.0.2 We provided an analytical model from the signal processing perspective as a basis
for the cross-comparison of the varieties of spread spectrum techniques. The technique we
have advocated for use in high data rate optical fiber communications - time hopping
CDMA - is shown to be distinctively different from other forms of spread spectrum.
Implementation of time hopping at high data rates will be dependent on device hardware
capabilities.

2.0.3 We addressed the generation of more usable codes than can be obtained by normal
construction methods and examined the hyperbolic congruence, the quadratic congruence
and the Welch-Costas codes. Specifically, we were able to utilize Zech Logarithmic
constructions with the normal constructions as basis, by a new method of deriving a
GF(11) field from the GF(2*) field. To our knowledge the generation of codes by these
construction methods is original and unique. The major results detected by this form of
analysis are: (1) The number of codes with good autocorrelation and crosscorrelation

properties can be increased by the use of the Zech Logarithm construction. This increase in
usable codes is particularly so in the case of hyperbolic congruence codes, less so in the

case of quadratic congruence codes, but not so in the case of Welch-Costas codes. (2) It is
significant that the relative merits of the three normal constructions - hyperbolic
congruence, quadratic congruence and Welch-Costas - are transferred to the Zech
Logarithm constructions of those codes. That is, both the merits and demerits of the normal
constructions appear in the Zech Logarithm constructions. These new methods provide a
fruitful way of doubling the number of usable codes. As each code provides another user,
or channel. their use will increase the available data rate of information transmission.

2.0.4 We applied optical, analog, Fourier transform principles to determine whether all-
optical methods can be implemented to rapidly detect time hopping codes in optical fibers.
We address three types of orthogonal codes: Hyperbolic Congruence Codes, p = 11;
Quadratic Congruence Codes, p = 11; Welch-Costas Codes, p = 11. A specific objective
was to determine whether optical auto- and cross-correlation methods provide sufficient
signal-to-noise to compete with electronic digital methods not only in speed but also in
accuracy. The results obtained are clear-cut. The optical (analog) method according to the
results obtained provides signal-to-noise levels equal to that of electronic (digital) methods.
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In the case of the two codes, the Hyperbolic Congruence and the Quadratic Congruence,
the results are superior for both auto- and cross-correlation detection. Furthermore, the
cross-correlation (but not the auto-correlation) of the Welch-Costas codes is known to be
inferior, and this is clearly detected. Future work will address implementing these
principles in a communications hub system.

2.0.5 We continued to develop optical, analog, Fourier transform analytical methods to
determine whether all-optical methods can be implemented to rapidly detect time hopping
codes in optical fibers and specifically in a hub system. We addressed three types of
orthogonal codes: Hyperbolic Congruence Codes, p = 11; Quadratic Congruence Codes, p
= 11; Welch-Costas Codes, p = 11. A specific objective was to determine whether multiple
orthogonal codes can be identified in an all-optical hub filter system. Using 2-D Fourier,
2D-inverse Fourier and filter optics, we show that the optics method performs well in
identifying/recognizing 4 or more codes. However, we also demonstrate that although

optical methods can be used to identify codes in noise, €.g.. the noise from other codes, the

hub system is ultimately overwhelmed by that noise. This is because optical methods
provide a global (in time) matched filter which is open to noise interference. An electronic

matched filter, on the other hand, provides local (in time) matched filters which are masked
from the noise caused by the presence of other codes by electronic switching. An electronic
matched filter would provide better performance in the presence of noise due to other
codes. We also examined the variables affecting BER in an optical receiver.

2.0.6 We addressed (1) the trades possible between the bandwidth of a multibit word and
the bandwidth of multiple frequency channels (WDM) under Shannon channel capacity
theorem limitations; and (2) the trades dictated by the power penalties due to: (i) the
extinction ratio; (ii) intensity noise parameter; (iii) timing jitter parameter; (iv) quantum
limit; (v) dispersion; (vi) mode-partition noise; (vii) mode suppression; (viii) frequency
chirping; (ix) feedback.

2.0.7 We addressed the problem of determining performance limits on optical
communications systems in the presence of both Poisson and Gaussian noise influences.
Traditionally the model for detection of the inherently stochastic optical signal is a simple
realistic model of a filtered Poisson process in which randomly excited detected photons
excite a bandlimited filter. However, there are further stochastic disturbances, €.g., additive
Gaussian colored noise introduced by post-detection signal processing circuits. As has
been pointed out by O’Reilly and others, the result is a superposition of marked
(compound) and filtered process with a colored Gaussian process. This is the mixed
compound Poisson plus Gaussian regime. We used moment generating function methods
to calculate those influences on receiver performance. We find that although the additive
influence do influence optical receivers with no gain, influences on receivers with
substantial gain are negligible. In the latter case, although compound influences are present,
there appears no real need to take them into consideration.

2.0.8 We addressed the impact of device capability on data rate and bit error rate,
examining chirped Gaussian pulses, dispersion, modulation formats, preamplification and
use of soliton pulses. The interaction between dispersion and pulse chirping was explored;
the optimal operation of lightwave systems was modeled near the zero-dispersion
wavelength of a fiber and by using optical sources with a relatively narrow spectral width;
the effect on bit error rate of various modulation formats was modeled; as well as the effect
on receiver sensitivity of filter bandwidth at various levels of the noise figure which
showed that amplifiers with small noise figure must be used and performance can also be
improved by reducing the optical filter bandwidth. As bit rate can also be increased by the
use of very short pulses, solitons were modeled with respect to pulse evolution according
to the order of the soliton. Other evolutions modeled were: to a “sech” pulse from a
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Gaussian input and from a “sech” input of varying order; dark solitons; soliton pairs; and
chirped solitons.

2.0.9 We addressed the underlying group structure of the orthogonal codes: the
hyperbolic congruence, the quadratic congruence, and the Welch-Costas codes.
Achievement of the highest data rate optical communications - given a defined
subcomponent performance - is dependent on achieving orthogonal codes with both
excellent auto- and cross-correlation properties. Excellent performance in the case of one
attribute, e.g., auto-correlation, is sometimes associated with poor performance in the other
attribute, e.g., cross-correlation. To determine the group structure determining performance
on both attributes, we initiated a study of the relative incidence of sequence occurrence
across codes based on different prime numbers, and for sequences of 2,...., 6. We report
the Mathematica algorithms and demonstrate the differences in group structure between the
three types of orthogonal codes. The superiority of the hyperbolic and quadratic
congruence codes in both auto- and cross-correlation properties, as compared with the
superiority of the Welch-Costas codes in auto-correlation properties, but poor performance
in cross-correlation properties, is mirrored in the lack of symmetry shown by the Welch-
Costas codes in the analysis offered here.

2.0.10 We addressed the possibility of increasing data rate in optical fiber
communications by using the method of bit parallel wavelength division (BPWD) which,
among other techniques, utilizes the “shepherding pulse” technique to maintain pulse
alignment. Both method and technique are due to Yeh & Bergman and is based on the
cross-phase modulation effect. The shepherding technique relies on the cross-phase
modulation effect. Simulation of this technique involves the numerical evaluation of
simultaneous coupled nonlinear Schrodinger equations. Yeh & Bergman used the split-
Fourier method but we were able to solve the coupled equations using approximation
methods. Although limitations in computer memory precluding our simulating over optical
fiber distances greater than 10 km, we were able to confirm that a shepherding pulse will
(1) decrease the bandwidth and heighten the amplitude of shepherded pulses; and (2) align
to a time slot shepherded pulses propagating before and after that time slot. We also
showed that (A) the effect is due to the greater amplitude of the shepherding pulse; (B) a
shepherd pulse, although energy will not be exchanged between the beams, will enhance
the compression of co-propagating beams at different wavelengths if those beams are in the
anomalous dispersion region; (C) unlike SPM and GVD, in the case of CPM, in the
presence of a shepherding pulse compression will occur for soliton orders << 1; (D) if the
primary pulse is in the normal dispersion region, a dark soliton is generated rather than
pulse compression; (E) time-alignment of copropagating beams. Successful generation of
time-aligned pulses on BPWD beams is crucial to the realization of ultra-high data rate
BPWD single fiber systems.These results are obtained within an analysis of the more
general relations of dispersive effects, the nonlinear Schrodinger equation and cross-phase
modulation.
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3.0 Probability of Error

A Gaussian approximation can be used to evaluate the probability of error for time
hopping codes'. A derivation in Kwong et al* gives the following approximation (valid for
large values of N:

= )

where
0= \/—2—;__[exp[—§ 12)d¢

is the unit normal cumulative distribution function and P is a prime number, as well as the
number of codes generated and equal to @, the number of binary ones per code sequence.
Fig.s 1, 2 and 3 show the (log) probability of error versus the number of simultaneous
users users as a function of P.

logPE

-9

-10F

-15¢F

=20 F

Fig. 3.0.1. Log Probability of error versus the number of simultaneous users for prime number and number
of codes = 23. It can be seen that pulse position modulation (PPM) CDMA can accommodate 23
subscribers and 18 simultaneous users with a probability of error less than 10°.-

"Prucnal, P.R., Santoro, M.A. & Fan, T.R., Spread spectrum fiber-optic local area network using optical
processing. J. Lightwave Technology, LT-4, 547-554, 1986;

Kwong, W.C., Perrier, P.A. & Prucnal, P.R., Performance comparison of asynchronous and synchronous
code-division multiple-access techniques for fiber-optic local area networks. /EEE Trans. Comm., 11, 1625-
1634, 1991;

Gagliardi, R. M., Mendez, A.J., Dale, MR. & Park, E., Fiber-optic digital video multiplexing using
optical CDMA. J. Lightwave Technology 11, 20-26, 1993;

Gagliardi, R. M., Pulse-coded multiple acces in space optical communications. /EEE J. Selected Areas in
Communications, 13, 603-608, 1995.

2Kwong, W.C., Perrier, P.A. & Prucnal, P.R., Performance comparison of asynchronous and synchronous
code-division multiple-access techniques for fiber-optic local area networks. IEEE Trans. Comm., 11, 1625-
1634, 1991.
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Fig. 3.0.2. Log Probability of error versus the number of simultaneous users for prime numbers and
number of codes = 23 and 29. It can be seen that pulse position modulation (PPM) CDMA can
accommodate 29 subscribers and 24 simultaneous users with a probability of error less than 10°.
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Fig. 3.0.3 Log Probability of error versus the number of simultaneous users for prime number and number
of codes = 1021. It can be seen that pulse position modulation (PPM) CDMA can accommodate 1021
subscribers and 1008 simultaneous users with a probability of error less than 10?.

Fig.s 3.0.1-3 indicate that time hopping pulse position modulation CDMA can
accommodate a large number of simultaneous users at an excellent error probability.

3.1 Interference from multiple access and graceful degradation

Other calculations indicate that the probability of error for orthogonal codes
decreases with (1) an increase of the matched filter threshold and (2) an increase in code
length. For example, Azizoglu er a’ addressed performance limitations in optical CDMA

3 Azizoglu, M.Y., Salehi, J.A. & Li, Y., On the performance of fiber-optic CDMA systems. Proc. IEEE
GLOBECOM 1990, San Diego, CA, Dec. 1990, pp. 1861-1865;
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scenarios. Using the primary number 11 as an example, the following variables are
defined:

F chips constitute a superframe. In the case of a 10x10 code matrix, F = 10? = 100. Each
of these chips is of durationz, with T, = F7_ being the duration of the superframe. K of the
F chips are occupied. In the case of p = 11 codes, K =11. The data encoding which
Azizoglu et al consider are cases of users in the network sending their data in an on-off

modulation format, so that for a “0” bit a user sends nothing and for a “1” bit a temporal
signature is sent, but the data encoding could be a pulse-position modulation scheme.

In the case of optical orthogonal codes (OOC), two code words should not overlap

at more than one pulse position. As there are K ? ways of pairing the K pulses of two
users, the probability that a pulse belonging to a particular user overlapping with one of the
pulses of the desired user is:

K2

T2

where the factor 1/2 is due to the probability that the interferer is transmitting a “1” - i.e.,
that the first form of informational encoding has been chosen.

If M is the number of users, and / the number of interfering users, the pattern of
interferences is described by a an interference vector, ¢fl). Given that there are i interfering
users - each interfering at exactly one pulse position - there is a variety of possible
interference patterns. Therefore, the vector, (I), is a K-dimensional vector whose ith
element, ¢;(l), represents the number of pulses that overlap with the ith pulse of the
desired user. As every interfering user contributes one and only one pulse’, the vector
satisfies:

K
Yoah=1 o) e{0l..0}.

If the receiver is not hard-limited, then:

and an error will occur if / = Th. On the other hand, in the hard-limited case, Th = K and

Azizoglu et al show that:
1 K ; K ( ql.)M—l
P.==—) (-1 1-— ,
=23 (T2

This probability of error is shown in Fig. 3.1.1 for three values of M, the number of
users.

Azizoglu, M.Y., Salehi, J.A. & Li, Y., Optical CDMA via temporal codes. IEEE Trans. Comm., 40,
1162-1170, 1992.
4 This assumption is questionable.

15




0 2 4 6
K

es)

Fig. 3.1.1. Bit error 3probability for an OOC with F = 1000, M = 10, 30 & 50 (lower to upper) and K = Th.
After Azizoglu et al’.

If the restrictions on the auto- and cross-correlations are relaxed from A =1 to
A =2, upper and lower bounds can be given to the error probability:

lower bound : P, = 3 (-1y[ [ ”i(z i)]M_l
ower bouna . = — —— 4= R
e UL kU ok

K/2 (K pi i M-1
upper bound : P, < -1 -——(2-— s
o < X )(i)[ K( K)]

where p = K*/4F . Upper and lower bounds are shown in Fig. 3.1.2, for M = 50, and
Fig. 3.1.3. for M = 10.

0 2 4 6 8 10
K =50, F=1000 ,

Fig. 3.1.2. nger and lower bounds to the worst case error probability for the A=2 code, M = 50. After
Azizoglu et al’.
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0 2 4 6 8 10
K =10, F=1000

Fig. 3.1.3. Upger and lower bounds to the worst case error probability for the A = 2 code, M = 10. After
Azizoglu et al”.

Further evidence that the probability of error decreases with an increase of the
matched filter threshold and an increase in code length is provided by Kostic and
Titlebaum®. These authors addressed the problem of error for two sets of quadratic
congruence codes defined with respect to the bound on the maximum value of the inner
product between two arbitrary sequences being equal to 2 - C’q, or equal to 1 - Cy,
where C’ . is a time hopping pattern set and C 1s an optical code set®. Interference 1s
represented by a probability distribution function (pdf) of a random variable, . For the
set, C’ o and prime p, the pdfis:

1 p
df. =——06(1 - —8(I,-1),
pdf.. p+15(" O)+p+1 (1,-1), and

El)=1 oU)=2"1,
and for the set, Cy, the pdfis:
3p-1 1 p-1
df. =—=—8U)+—6(U -1)+——06(, -2), and
Eq)=1 o’()=2=2
4p

With the variables, A, B and C, defined as:

5 Kostic, Z. & Titlebaum, E.L., The design and performance analysis for several new classes of codes for
optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication
systems. IEEE Trans. Comm., 42, 2608-2617, 1994.

§"Sequences from the set C’ o have the bound on the maximum value of the inner product between two
arbitrary sequences equal to 2 and the number of code sequences is very large. The code set C'c can be
partitioned into many smaller Coc sets with the bound on the inner product equal to 1. Cf. Kostic, Z. &
Titlebaum, E.L., IEEE Trans. Comm., 42, 2608-2617, 1994.
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A=_P_:l,3=_}.,c=_p_:_1.,
2p p 2p
A_.3_p:._1’B_i,C=p_.__l

4p 2p 4p

for the sets C’ o and Cy, respectively, the error probability is:

18 & No1m) p2jmi e (N=1)
PE=— A" BTTCT e — —+
2 ;’EJ (2j =i = NN =1- j)!
2
2(1\'2—1) I§AN_1_jBZj_iCi_j (N=1)
w15 (2j-i)(i- jH(N-1- )
2

Fig.s 3.1.4-7 show the (log) error probability versus matched filter threshold for several
codes and users. Fig.s 3.1.8-11 show the ratio of the error probability to the number of
sequences in a set versus the matched filter threshold for a number of codes and users.

1
o
<N

1
o
o

1
—
v

t—O.CII O "U;!Obﬂ'bl—'l—l-'d‘q
L and o
[ ] o0

0 1 2 3 4 5 6 7
Threshold, p=7, N=8

Fig. 3.1.4. Error probability versus maiched filter threshold for p =7, N =8. Cy (lower), C ¢ (upper).
After Kostic & Titlebaum®.
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Fig. 3.1.5. Error probabili?f versus matched filter threshold for p = 11, N = 12. Coc(lower), C’oc (upper).
After Kostic & Titlebaum™.
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Fig. 3.1.6. Error probabilit;r versus matched filter threshold for p = 11, N = 14. Cyc(lower), C’ o (upper).
After Kostic & Titlebaum™.
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Fig. 3.1.7. Error probabilitﬁy versus matched filter threshold for p = 13, N = 14. Cyc(lower), C’ o (upper).
After Kostic & Titlebaum"™.
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Fig. 3.1.8. Log PE/number of sequences in set as a function of threshold. p = 7, N = 8. Cqc (upper); C'oc
(lower).
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Fig. 3.1.9. Log PE/number of sequences in set as a function of threshold. p = 11, N = 12. Cqc (upper);
C’oc (lower).
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Fig. 3.1.10. Log PE/number of sequences in set as a function of threshold. p = 11, N = 14. Cqc (upper);
C’ c (lower). After Kostic & Titlebaum™.
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Fig. 3.1.11. Log PE/number of sequences in set as a function of threshold. p = 13, N = 14. Cy (upper);
C’oc (lower).

3.2 Reduction in Performance Resulting from More Pulses in a Sequence is
Offset by Raising the Threshold of the Receiver

The simple staterent that performance is improved by increasing the code length
and raising the receiver threshold obscures a more subtle relationship. Using more pulses
in a sequence does not result in a reduction in performance if one can raise the receiver
threshold. In fact, raising the receiver threshold due to the availability of more pulses in the
code results in a much greater gain in performance than any reduction in performance due
to there being more pulses in the code. However, if the number of pulses in the code were
increased and the threshold were kept constant, then the performance would degrade.

This can be seen using the method of extended sets of Salehi’. By this method, if
two codes #1 and #2, e.g., of the cubic congruence code p = 11 are considered, then
equivalent sets, A’ and A?, are:

A'=1{17,7,14, 5,13, 5,14,7,17, 1},
A*={4, 11,16, 8,9, 8, 16, 11, 4, 13}.

The Salehi extended sets are defined as follows. For any sequences, x, and y,, of
period F and chip size K:

F-1
P

n=0

n"n+l

K forl=0
<A, for 1<I<F-1"

<A, for 0<I<F-1

F-1
z XYt
=0

7 Salehi, J.A., Code division multiple-access techniques in optical fiber networks - Part I: Fundamental
principles. [EEE Trans. Comm., 37, 824-833, 1989.
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where A, and A are constants. Optical orthogonal codes are defined by the condition: A, =
A= 1. An extended set, A’ is defined as all linear combinations of jointly connected
relative delays, 7, of different lengths, e.g.:

Agr ={10, 000 Ty T+ Ty Ty + 7 T4+ Ty e T+ T 4T, 5

ne
In the case of A’ and A?, the extended sets are:

Al =

(17,7,14, 5,13, 5, 14,7, 17, 1, 24, 21, 19, 18, 18, 19, 21, 24, 18, 38, 26, 32, 23, 32,
26, 38, 25, 35, 25, 43, 39, 37, 37, 39, 43, 39, 42, 42, 39, 56, 44, 51, 44. 56, 44. 56,
49, 56, 44, 61, 58, 58, 61, 57, 61, 63. 63. 61, 57, 75, 65. 75, 62. 57. 61. 63. 63. 61.
57. 82. 82. 76, 61, 57, 61, 63, 63, 61, 57, 99, 83, 58, 61, 57, 61, 63, 63, 61);

A=

{4?{1, 16, 8, 9, 8,16, 11, 4, 13, 15, 27, 24, 17, 17, 24, 27, 15, 17, 17, 31, 35, 33, 25,
33, 35, 31, 28, 21, 28, 39, 44, 41, 41, 44, 39, 44, 32, 32, 44, 48, 52, 57, 52, 48, 52,
48, 43, 48, 52, 56, 68, 68, 56, 61, 56, 59, 59, 56, 61, 72, 79, 72, 69, 61, 56, 59, 59,
56, 61, 83, 83, 85, 56, 61, 56, 61, 56, 59, 59, 56, 61, 87, 96, 68, 56, 61, 56, 59, 59,
56, 61},

where
|Atxr| = K(K =1) and for K =10, |Ag,|=90.

From the above, we can see that there are elements of both the sets A’ and A%, which
are repeated eleven times and that there are common elements between the two sets, e.g.,

17, 24, 35, 61. Thus, the above code is not an optical orthogonal code as defined by A, =

A= 1.
In the case of N codes, the number of optical orthogonal codes are bounded by:

el 2L |
K(K-1)
For example, with F = 100 and K = 10, N < 1, that is, only 1 optical orthogonal code is

expected. In fact, the expectancy of an optical code can be predicted from the probability of
a hit, or overlap in transmission from multiple users:

KZ
P-—F—-

For the codes considered in the tables above, i.e., with K = 10 and F = 100, p = 1. For
K?/F > 0.8 no families of optical orthogonal codes can be constructed other than K = 2

=2 and F = 5. (By optical orthogonal code a definition is meant whereby A, =A_= 1.) In
the following, we see that this strict criterion can be relaxed.

Forp
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3.3 Bit Error Analysis

The upper bound of the probability of error for the case of chip synchronous is®:

N1 N 1Y g2 2 \N-1-i
2 i=Th l 2F 2F
where “Th” is a correlation receiver threshold, 0 < Th < K. Fig. 3.3.1 indicates (a) as

expected, a reduction of the number of chips per frame results in a lowering of
performance; and (b) as the receiver threshold is raised, the performance improves.

1 2 3 4 5
1:Th<K; N=20, K=5, F = 1000 & 2000
Fig. 3.3.1 Upper bound on bit error rate (chip synchronous): N = 20, K = 5. Upper, F = 1000; Lower, F =

2000. A reduction in the total number of chips per frame, F, i.e., slots available, results in a reduction in
performance. After Ref®. Fig. 3(a).

M g o
I
o

-10
-12

0 2 4 & g
1<Th:K; N=10, F=1000, K=1,3,5,7 & 9

8 Salehi, J.A. & Brackett, C.A., Code division multiple-access techniques in optical fiber networks - Part
II: Systems performance analysis. J[EEE Trans. Comm., 37, 834-842, 1989.
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Fig. 3.3.2. Upper bound on bit error rate (chip synchronous): N = 10, F = 1000, K = 1,3,5,7,9, left-to-
right. Although increasing the number of pulses in the code, K, ostensibly results in a reduction in
performance, the possibility of raising the receiver threshold actually results in a considerable increase in
performance. After Ref®, Fig. 3(b).

Fig. 3.3.2 on the other hand, indicates that using more pulses in a sequence does
not result in a reduction in performance if one can raise the receiver threshold. In fact,
raising the receiver threshold due to the availability of more pulses in the code results in a
much greater gain in performance than any reduction in performance due to there being
more pulses in the code. However, if the number of pulses in the code were increased and
the threshold were kept constant, then the performance would degrade.

Fig. 3.3.3 shows the result for the case of the number of slots available in a
superframe, F, being much larger than the number of users, N. In this case, increasing the
number of users results in a reduction of performance (increasing N from 10 to 50 is
shown). This reduction in performance can be offset by hardlimiting the receiver. An
optical hardlimiter, or threshold element, is defined as:

() = 1, x=21
8=, 0<x<rT

That is, if an optical light intensity (x) is greater than, or equal to, one, then hardlimiting
gives an output of one; and if the optical light intensity is smaller than one, then the
response of the hardlimiter is zero.

(=

2 3 4 5
1«Th<K; K=5, F=1000, K=50, 30, 10
Fig. 3.3.3 Upper bound on bit error rate (chip synchronous): K =5, F = 1000, N = 10, 30 and 50, left-to-
right. This is the case of the number of slots in a superframe, F, being much larger than the number of

usefl:gs, N. In the case, increasing the number of users results in a major reduction in performance. After
Ref’, Fig. 3(c).

If hard-limiting is used on a receiver front-end, then the probability of error for the
chip synchronous case is:
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1 K Th-1 K
PE < — 1-¢g" ™), g=1-—; p=1-gq.
3 (Th)g( ¢y a=1-—2 p=l-g

Fig. 3.3.4 (when compared with Fig. 3.3.2) shows that hard limiting increases
performance by approximately 1.5 orders of magnitude. Fig.s 3.3.5 and 3.3.6 (when
compared with Fig.s 3.3.1 and 3.3.3) indicate the same level of performance improvement.

oF
-2.5
L 5
=)
g -7.5
P -10
Ei2s
-15
0 2 4 6 8

1<Th«K; F=1000, H=10, K=7 & 9

Fig. 3.3.4 Upper bounds on bit error rate (chip synchronous) with optical hard limiter: F = 1000, N = 10
and K = 7 (lower, haiched), K = 9 (upper, line, showing that hard-limiting increases performance by approx.
1.5 orders of magnitude. After Ref”, Fig. 6(b).

1 2 3 4 5 6
1<Th<¥; F=1000, K=50,K=5 & N=30,K=6

Fig. 3.3.5 Upper bounds on bit error rate (chip synchronous) with optical hard-limiter: F = 1000, N = 50
and K = 5 (upper, line) and N = 30 and K = 6 (lower, hatched). After Ref® , Fig. 6(a).
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1 2 3 4 S
1:TheK; F=1000, K=5, N=10 & 50

Fig. 3.3.6 Upper bounds on bit error rate (chip synchronous) with optical hard limiter: F = 1000, K =5 and
N = 10 (lower, hatched), N = 50 (upper, line). Compare with Fig. 3.1.3. After Ref®, Fig. 6(c).

‘ In the case of asynchronous transmission with hard limiting, the probability of error
is:

.1_ K \Ir=1 | veiem L Neoem  IRG™ N-1-m i Notciemq 1-i/2
PESz(Th)g,[l {q +(N-1-m)pg" ™" + ;( ; )pq (1 Q(——,—i /IZDH

where
=X
F’
q=1_p’

00x) == fexp| £~
27 2 [

Fig. 3.3.7 indicates the improvement of hard-limiting to the asynchronous case. The
improvement is about 4-5 orders of magnitude.
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-15

1 2 3 4 5

1:Th<K; F=1000, K=5, H=10 & 50

Fig. 3.3.7 (lower line) and N = 50 (upper line). With hard-limiting the system performance increases by 4-
5 orders of magnitude. After Ref®, Fig. 7.

Because the number of users is unacceptably low with the criterion A = 1, the

consequences of raising this criterion to A = 2 has been examined. With [, users interfering
at 1 position and I, users interfering at 2 pulse positions, (giving the total number of
interfering pulses = L, + 21,), the error probability is:

1
Pe=> Y Pr(il,)

L —-21,>Th

L-L<M
with
L+, <M,
< (F-1)F-2) .
T K(K-1)(K-2)

The probability of error is then:

1 1 Th-1(Th-1-}4)/2] (M_l)! .
P =——= 1g2(1— _
57272 ,S:, & npM-1-L-pt % (1-a.-a

)M—1—z1 -1,

Azizoglu et al° have shown that the statistic:

a
KZ
2

C =
F
indicates the deviation of a pde from the strict orthogonal optical code (OOC) criterion. For

¢ = 1 the code is an OOC. For ¢ = 0, the code will have 2 overlaps in auto- and cross-
correlation (see Note 6). Fig.s 3.3.8 and 3.3.9 show the error probability as a function of ¢

$ Azizoglu, M., Salehi, J.A. & Li, Y., Optical CDMA via temporal codes. IEEE Trans. Comm., 40, 1162-
1169, 1992.

27




for the optimum threshold: Th = K, with F = 1000 and for the hard-limiting case. These
Fig.s show that the error probability increases with decreasing c¢, but the number of
possible users increases.

&

0 0.5 1.0
C, Wo Hd Limiting; M=10, F=1000, K=2,4,6,8 & 10

Fig. 3.3.8 A =2, Optical Orthogonal Code, without hard limiting. Dependence of the error probability on
the parameter ¢ = q,/(K* /2F) and M < [(F-1)(F-2)//[K(K-1)(K-2)]. M = 10, F = 1000,K = 2, 4, 6, 8 & 10
top to bottom. After Refg, Fig. 4(a).

k]

Md g o

0 0.5 1.0
C, Ho HA Limiting; ti=10, F=1000, K=2,4,6,8 & 10

Fig. 3.3.9 A = 2, Optical Orthogonal Code, without hard limiting. Dependence of the error probability on
the parameter ¢ = ¢,/(K*/2F) and M < [(F-1)(F-2))/[K(K-1)(K-2)]. M = 50, F = 1000, K = 2,4,6,8 & 10,
top to bottom. After Ref®, Fig. 4(b).

On introducing hard-limiting to the receiver, and with A = 2, the lower bound on

the error probability is:
P2—) (-1 -—[(2~-— ,
3 22( )(i)[ k" Kk

and the upper bound is:
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The upper and lower bounds are shown in Fig. 3.3.10, for M = 50, F = 1000, and in Fig.
3.3.11, for M = 10, F = 1000. A comparison with Fig. 3.3.12, for the A = 1 case,
indicates that the performance with A = 2 is a few orders of magnitude poorer, but as

pointed out by Azizoglu et al, more chips, K, can be used for the codes, thus giving
compensatory performance - as Fig. 3.3.2 clearly shows. Therefore the conclusion must be

that A = 2 codes may be as good in performance as A = 1 codes, while possibly offering
the availability of more codes to more users.

Q 2 4 =) 8 10
K ti=50, F=1000

Fig. 3.3.10 Upper and lower bounds to the worst case error probability for the A = 2 code, M = 50, with
hard limiting. After Ref’, Fig. 5 upper.

0 2 d 6 8 10
K =10, F=1000

Fig. 3.3.11 Upper and lower bounds to the worst case error probability for the A = 2 code, M = 10, with
hard limiting. After Ref’, Fig. 5 lower.
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T

Fig. 3.3.12 Bit error probability for an OOC (A = 1) with F = 1000, M = 10,30,50 (lower to upper) and X
= Th. After Ref’, Fig. 2).

3.4 Timing Errors

There is a dramatic degradation of the system when timing errors are introduced,
indicating the reliance of PPM systems on accurate timing control. Both direct detection and
heterodyne detection were examined, as well as the probability of error (PE) and
probability of word error (PWE) for PPM. A complex interplay between good PWE and
length of superframe size can be demonstrated.

In the shot-noise-limited-ideal-gain case, for a specific bit interval, the output of.
e.g., a current bit-time integrator following direct photodetection is the random variable:

v=egm,
where m is the primary count variable collected from the bit integration, e is the electron

charge and g is the gain of the photomultiplier. The probability that m = k is the Poisson
probability:

(K, + Kb)k exp[—(Ks + Kb)]
k!

2

Prilm=k]=

where K and K, are the contributions to the average count from the source field and
background or 1nput noise, respectively. With respect to the optical pulse power, P,, and
the average background power, P,, these are defined as:

K, =aP]T,

K, =abT,

where 0. is a proportionality constant.
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A comparison of v with a set threshold, v;, is equivalent to a comparison of the
count variable, m, with a threshold m,=v,/eg. Therefore the decoding bit probability of
error (PE) for equally probable bits is:

PE = 0.5x Pt[m > m;| 0]+ 0.5 Pr{m < my|1].

Inserting the Poisson count probabilities gives'%:

K +K, ) exp|-(K. +K = K*exp[—
PE=O.5xZ::0( +Ki) ex;[ (KK, o5 2———K”cxz'[ K]
H k=myp .

As the threshold can be selected to minimize the PE, a choice is made so that dPE/dm; = 0,
giving a threshold value of: .

K

S

mT‘- ( K J.
log| 1+ —=
Kb

Plots of the bit error probability using this value for an on-off keying (OOK) system for
several values of K, are shown in Fig. 3.4.1. These curves provide an estimate of the
amount of received pulse power needed to achieve a desired PE with a given amount of
background light present.

10~-1

1072

s Blacd

1073

1074

0 10 20 30 40
Signal Count, Ks

Fig. 3.4.1 Bit error probability, OOK binary system, for various noise counts per bit interval,: 0, 1, §, 10,
left to right.

With an avalanche photodiode (APD), the statistics are changed to account for the
receiver containing thermal noise. producing random gain and resulting in Gaussian noise.
The integrated detector current has a continuous probability density which is:

10 Pierce, J. Optical channels - practical limits in photon counting. IEEE Trans. Commun., 26, dec., 1968;
Karp, S., O’Neill, E. & Gagliardi, Communication theory for the free space optical channel. Proc. IEEE,
58, October, 1970;

Gagliardi, RM. & Karp, S., Optical Communications, 2nd Edition, Wiley, 1995.
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pv/k)= iP(kzll_c-)G(v,ekz,of)
k-0
where

G(V a 0'2) = _l—exp :(_‘.).:_‘}.Zi
o \wo, 207 |
0, =N, T, = (26T° /R, T,,

N, is the spectral level,

T, is the bit field length,

P(kZII? ) is the discrete APD count probability with primary mean count k.

As the test is now an integrated current threshold test, as opposed to a count test as in the
Poisson channel, the probability of bit error is:

PE =0.5% j (YK, +K,)dv+0.5x I p(V K, )dv.
1]

vr

with threshold:

p(le K+ Kb) = P(VTl K,,).
Combining these two Eq.s gives:
PE=05+05 iﬂ[P(@] K,)-P(k|K, + Kb)Q(XZ_;ﬂH,
ky= .

where
ox)= TG(V,O,I)dv.

When the average counts K, and K, are high, the discrete APD counting
probabilities are approximated by continuous Gaussian densities. With (1,0) subscripts
indicating the (on,off) pulse condition, the variable, v, is then a Gaussian variate with mean
and variance dependent on the “1” and “0” bits.

The OOK bit error probability for the Gaussian model with v, a decision threshold
is:
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PE=0.5%x Q(MJ +0.5% Q(u) where
o o,

m, =ge(K, +K,),
m, = gekK,,
ol =gFe*(K, +K,)+02,
62 =(ge)’FK, + o2.
with an optimal threshold:

=ml+m0

Vr .
0,+0,

Use of the optimal threshold gives the following PE:

PE = Q[m) = O(VSNR), where

0, +0,

svg<(mrm) _ (EeK)
(6,+0,) (0,+0,)

Fig. 3.4.2 is a plot of the OOK PE versus SNR, Gaussian model.

0.01
P
p 0.0001}
-6
1. 10
6.1 0.2 05 1 2 5 10.

SHE.

Fig. 3.4.2. OOK bit error probability versus SNR, Gaussian model.

In the case of Manchester coding for the Poisson channel, the bit error is the
probability that one Poisson count containing the pulse energy does not exceed another
Poisson count containing no pulse:
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PE = i iPos(kl,Ks +K,)Pos(k,,K,)+0.5% iPos(lq,Ks + Kb)Pos(kl, K,),

K=0k,=k+ k=0
where the Poisson probability with level q is :

q"Exp[—q]

Pos(p,q) = )
Fig. 3.4.3 shows plots of the Manchester Poisson model PE in terms of K and K,. As the
OOK method uses pulses twice as long as the Manchester method, the OOK has a higher
noise count, K. Therefore if the systems are compared at the same K, the Manchester

0.1
0.01

P
E n.o01
0.0001
0.00001

0 5 10 15 20 25 30
Signal Count

Fig. 3.4.3. Manchester encoding, Poisson channel. Plots are for signal count, K,, at various K,’s: 0, 1, 5,
10, left to right.

coding shows better PE performance. However, if systems based on the two methods are
compared at the same average signal power, the OOK has twice the signal energy, and
therefore the better performance.

The above methods involved direct detection. However, a coherent digital system
can be used by encoding digital bits directly on the phase or frequency of the laser carrier.
With a heterodyne receiver, the laser carrier can be downconverted to an RF frequency, and
the digital modulation treated by RF methods. If a strong laser field is used for the
heterodyning, the photodetected mixed field can be modeled as a Gaussian process and the
decoding bit error for Gaussian RF channels with BPSK and FSK modulation is:

PE - {Q4 [2E,/N,, BPSK

0.5x exp[-E,/2N,,| FSK
where E,/N,, is the decoder signal bit energy to noise level ratio, defined:

S

E, 2K

N,, 1+aN,

Fig. 3.4.4. shows plots of PE for BPSK and FSK heterodyne decoding as a function of
the parameter K /I1+0N,,.
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Fig. 3.4.4. Bit error probability vs normalized signal count for heterodyne digital systems. PSK left, FSK,
right.
3.5 Pulse Position Modulation
An alternative to binary systems is block encoding permitting pulse position
modulation (PPM). A decoding word error is made if an incorrect slot produces a higher

integration value than the correct slot. As integrations are independent from slot to slot, the
probability of word error (PWE) in PPM is:

oo v M-1
PWE=1—Ip@J%)p@J®d%] v,
0 0

where

p(v|1) is the probability density of v for the signal slot, and p(v|0)is that for the incorrect
slots.

For the Poisson receiver model, the probability of word error is:

_ M . b1 M-1
pwg =1 SBK &ﬂ—th@&+m{2hm@mﬂ

M k=1 k=1

M-1 (M = 1)' oo k=1 M-1-r
- ' Pos(k,K, +K,)[Pos(k,K,]'| ¥ Pos(j,K,
Z{r!(M—l—r)!(rH); os(k.K, + K, )| Pos(k.K, ,:20 0s(j, K,

where K, is the noise count per slot level and K is the signaling pulse count.

With the Gaussian detector model, the probability densities are:
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| p(W|1) = G[v,g(K, +K,),0%},
' p(v|0) = G(v,geK,,00).
The PWE is bounded by'':

PWE = (M —1)Pr{one incorrect slot v exceeds the correct slot v],

indicating that the probability in brackets is similar to the Manchester PE. Therefore, the
PWEis:

PWE = (M -1)Q(/SNR).
Plots are shown in Fig. 3.5.1 for various values of M with K, =3.

The appearance in Fig. 3.5.1 of performance worsening as higher frame sizes, M,
are used is deceptive. K, and K, are fixed; the higher M systems are transmitting higher
data rates at fixed frame times (i.e., the curves are not rate normalized, and PPM systems
convert average laser power to peak power directly proportional to M, resulting in the
higher M systems operating at higher K values. The latter point is manifest when K is
written in terms of the average laser power, P_.

Ks=aPst
= a(MP,)T,
1b
0.1y
0.01%
P
g 0.001}
E u.0001}
0.00001F
-6}
1. 10 -
3 S 7 10. 15. 20.
Signal Count

Fig. 3.5.1. Word error probability for M-ary PPM decoding. Gaussian channel. K, = 3 counts/slot. M= 2,
4, 8, 16, left to right.

There is a rapid degradation of the channel as timing errors, A, are introduced into a
PPM system. This degradation can be described as follows. Defining:

' Wozencraft, J. & Jacobs, L., Principles of Communication Engineering, Wiley, New York, 1965.
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K, =nlT,

K, = n(T,-b),
K. =nA, where
T, is bit time, sec,

A is time offset, sec,

then

P(v<v,| K,)= iPos[k,Ks(I -28)+K,],
k=0

P(v>v | K))= i(k,K},),

k=vy

where £ = A/T, These Eq.s are combined to give the OOK PE of a system with the noise

count increased from K, to K’, and the signal reduced from K, to K (I-2¢). For the
Poisson channel this is:

PE|A=0.5x PE(K,,K,)+0.5x PE[K,(1-2¢),K,e+K,].

Fig. 3.5.2 plots this PE versus the normalized timing error, showing the rapid degradation
of the system as the timing error increases.

0.1}
p 0.05

0.01¢
0.005}

0.001

0 0.05 0.1 0.15 0.2

Hormalized Timing Error

Fig. 3.5.2 OOK decoding versus normalized timing error, €. Poisson channel. K, = 0.01; K, = 2, 5, 10,
50, 100.

In the case of the Manchester decoder (Poisson receiver), the PE is:

PE|e=0.5x PE(K.,K,)+0.25x PE(K.,K,)+0.25x PE(K,,K,),




where

K, =K ,(1-2¢),
K. =K,(1-¢),
K, =Ke+K,

Fig. 3.5.3 plots the normalized timing error, €, against PE, showing, again, that the system
performance degrades as the timing error increases.

0.05F

0.01F
E
P 0.005F

0.001F
0.0005

0.0001

0 0.1 0.2 0.3 0.4 0.5
Normalized Timing Error
Fig. 3.5.3. Manchester decoding versus normalized timing offset €. Poisson channel. K, =0.5,K, =2, 5,
10, 20.

In the case of the Poisson channel, the probability of word error (PWE) is:

- k K M-2
PWE|e=1- Pos[k,K,(1-&)+K,]> Pos(j,K £+ Kb)[ZPos( j,K,,} :
k=0 j=0 j=0

Fig. 3.5.4 shows plots of PWE versus timing error. Again, there is demonstrated a rapid
degradation in performance as the timing offset increases.
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Fig. 3.5.4 PWE degradation for PPM versus timing offsets. Kb = 3; Ks = 10, M = 8 & 10 (upper); Ks =
30, M =4 & 8 (lower).
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4.0 Differences between Time Hopping CDMA and other forms of Spread
Spectrum Communications:

We address, here, only the first matched filter, which identifies the channel or user
code, not the second matched filter, which identifies the information encoded in a pulse-
position modulation, or phase-shift keying scheme. We use the terminology introduced by
Flikkema'?, except when a departure is called for and such departures are indicated. If

{b,.} is the informational sequence, b, € +1or 0

then the received sequence is;
r,=Eb,+w,,

where E is the energy of the transmitted pulse and w, is zero-mean additive white
Gaussian noise (AWGN) with autocovariance:

E[w,W,..|=06%6().

m’ m+l1

In the case of time hopping CDMA, for each informational bit, instead of one pulse
being transmitted, one pulse within one slot of a frame of slots, e.g.,
{0,0,0,0,1,0,0,0,0,0}, is transmitted. If we only consider the transmitted bit, then the
subscript m can be dropped and the transmitted signal for every bit over a frame of N slots
is:

s,=Eb, n=1,...,N.

n s

Thus, 1 discrete-time pulse in one slot positioned (by a code) within a frame of N slots
represents a bit of information. Therefore the duration of a data bit is partitioned into N
subintervals or slots.

Whereas with other forms of spread spectrum during one subinterval, or slot
duration, of one frame, a pulse of energy

E,=E/N

is transmitted, in the case of time hopping, only one pulse is transmitted per frame.
Therefore

E =FE,

Ly

and we drop the subscript, s, there being no difference between the pulse energy at a
particular slot, and the total energy transmitted during a frame (for one code). Each slot or
subinterval in a frame is known as a chip.

The received sequence for the frame, which represents the bit, is:

12 Flikkema. P.G., Spread-spectrum techniques for wireless communication. IEEE Signal Processing
Magazine, May, 1997, 26-36.
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r,=Eb+w,,n=1,...,N

with noise of variance E[w;]|= 0 /N. However, it should be noted that the matched filter

is only “open” to receive a signal at one slot or subinterval of the frame time - that
subinterval being determined by the code. Therefore, unlike other forms of spread
spectrum, the received sequence for the frame is:

r=Eb+w
and we drop the subscript 7.

The optimal receiver employs a correlation before the level detector, that correlation
being for a code length N over a superframe (of N XN = M chips) representing N bits.
Therefore the decision variable for the superframe, or output from the receiver, is:

y= i(Eb +w,)= NEb+ zN“w,,

n=1 n=l

Thus the decision variable, or receiver output, y , has a mean NEb and variance
2

N % = ¢, so performance is determined by the ratio E/0o.

The transmitted signal per frame can be written as:
s, = Ebc,

where ¢ = either 1 or 0, and only one'1 is assigned per frame; and the transmitted
signals per superframe can be written as:

N
S,=s,=NEbc,, n=1,.,N,
n=1

where {c,l}::V = 1, with each frame identified with a unipolar unitary value (as opposed to
each chip being identified with a bipolar unitary value in conventional spread spectrum).
Each frame could be identified with m-ary values, but for ease of exposition unitary values
are used here.

Quite apart from the assignment of unipolar unitary values to frames, instead of
bipolar unitary values to chips, time hopping spread spectrum differs from other forms of
spread spectrum in distinguishing frame signals from superframe signals.

The spread spectrum property, for other forms of spread spectrum, arises from the
fact that the chips, rather than being identically valued, are drawn from a known
(deterministic) binary (+1 or -1) source. In the case of time hopping, the spread spectrum
property arises from the fact that it is the value of the frames (of chips) which are drawn
from a known (deterministic) binary (1 or 0) source. The source in both cases provides the
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coding scheme. The sequence of chips, for conventional spread spectrum, or of frames, for
time hopping, is known as a spreading sequence.

Assuming that the spreading sequence {c"} is defined for all » and has period N,

N
ie., zcncmN = N, for any &, then the mean value is unitary (rather than zero - as in the
n=1
case of other forms of spread spectrum), i.e.:
1 N
_ =0,
N2
and the time autocorrelation (the discrete time periodic autocorrelation) is:
1 & 1, i=0
_zcncn-ﬂ' = : ’ |
N~ min, O0<|i|<N.

The correlation receiver performs the following operation to obtain the decision
variable, or correlator output, y:

N N
y= > rc, = (Ebc, +w,),,
n=1 n=1

or

¥y, = NEb+ iwncn .

n=1

If an interfering signal, I, is added to the received signal, the decision variable for
the unspread system has a mean of

N(Eb+1),
rendering it unusable. For the spreqd system, the received sequence is:
r,=Ebc,+i +w,, n=1..N,
where i, = 1.

The correlation receiver then produces the decision variable:
N
y= (Ebc, +i, +w,),,
n=1
which yields:
N N N
y=NEb+1Y,c,+ Y, W,c,=NEb+0+ Y w,c,.
n=1

n=l n=1
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Thus the decision variable has a mean of Eb and a variance of o?, with the interference
suppressed by the despreading (correlation) operation.

Mitigation of Multipath:

The information sequence is {b,} _,. Following Flikkema'” but with
modifications, the frame energy is incorporated into the bits by setting b,, = {Ec}.

Considering a simple multipath channel, with a direct path with strength o and a
specular (reflected) path that causes another copy of the signal to arrive at delay / with
strength . The received frames (as opposed to chips) during the mth bit interval are:

n

—_— wmcn + ﬂbm—lcN_[.Hp n= 1,...1 - 1
- abmcn + ﬁbmcn_za n= l,...N

for 0 << N, i.e., the delay is less than a frame duration.

Therefore:

-1 N N
ym = Nabm + ﬁbm—lch—ann + ﬁbmzcn—lcn + zwncn ’
n=1 n=! n=1
which becomes
N
Y, = Nob, +0+0+ Y w,e,
n=1

and the multipath is suppressed by the despreading.

Multiple Access:

With K users and with the kth transmitter modulating its output with a spreading
sequence {cff’}, then the members of this set of signature sequences or spreading codes
have the crosscorrelation property:

L 1, k=j,i=0
N—Zcﬁ"’cff&= min, k=j,0<|i<N

n=1

min, k#j

With time synchronization among the signals, and considering signal k£ = 1, the
received signal is:
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¢)) ) o m)? 3 (k) 3 (k) .(1) v (0))
yw =P 2 (el) + 2 b2 el + Y we,
' n=1 k=2

n=1 n=1
Because of the mutual orthogonality of the sequences, this Eq. simplifies to:

N
3 = Nb® +0+ 3w,

n=1
and simultaneous transmissions in the same channel are permitted.
Defining the signaling pulse:

1, O0<t<T
0, otherwise

pr(t) ={

The informational pulse corresponding to bit m is:

5.(t)=b,c,pr (t—nT),

and the sequence of pulses corresponding to N bits transmitted over a superframe is:

N
sy(®) = Zb,,c,,pn (t—nT),

n=]

where the chip, or slot, energy is E = A’T,, T, is the chip or slot duration, and T, is the

spreading rate. The frame duration, or bit duration, is then:
T, = NT,,

with the ratio, N, being the processing gain.

As comparison, the following five continuous time systems and time hopping

CDMA, a discrete time system, are defined:




ﬁ

s(t) = is,,,(t—mT,,)
m=0

Spread Spectrum Variations,
with informational pulse corresponding to bit m:

5,.(t) = b,,py (t—nT,)

Direct Sequencing Spread Spectrum - the
spreading sequence {c,}directly modulates

the information sequence {b, }.

5,,(t) = Ab,, cos2nf, )p; (¢ —mT,)

Frequency Hopping Spread Spectrum - f, is
chosen from a set of N frequencies selected
according to a code sequence. The
informational sequence, b,, modulates the
phase of the signal, so the signal is a Binary
Phase Shift Keyed Signal (FH/BPSK).

5,,(t) = AcosQ2n(v,, + f,)0)pg, (¢ —mT,)

Frequency Hopping Spread Spectrum - the
information sequence and also the spreading
sequence jointly determine the frequency of
the signal, with the information encoded in
the frequency v,. This is M-ary Frequency-
Shift Keyed FM (FH/IMFSK).

The Fourier Transform of the transmitted

pulse in signal interval m is:
N/2-1

0.(f)= X b (k)W) (f ~kF)
k=-N/[2
The Inverse Fourier Transform is:

s(t) =Y. q(t —mT)w(z —mT)

Spread Time (ST) Modulation’. Direct
modulation occurs in the frequency domain.

N
$.(1) = b, Y. ¢, exp[i2mnFt/1,)py (t—mT,)

n=1
and the transmitted signal is:

s(t) = ism(t -mT,)
m=0

Multicarrier CDMA™ Spreading sequence is
applied in the frequency domain to N
carriers with spacing determined by the
integer F.

N
S, () = b, > expli2n(t +c,1)/1,)py, (t — mT,
n=1

and the transmitted signal is:

Time Hopping CDMA. §preading sequence
) applied in the time domain to N frames each
of duration T, in which a pulse occurs once
in slot time T, at offsets c,T for N frames
or 1 superframe.

N
s@) =5, (—mT,)

13 Crespo, P., Honig, M. & Salehi, J.A., Spread-time
43, 2139-2148, 1995.

code division multiple access. IEEE Trans. Comm.,

1 yee, N., Linnartz, J. & Fettweis, Multi-carrier CDMA in indoor wireless radio networks. IEICE
Transactions on Communications, Japan, vol. E77-B, pp. 900-904, July 1994.
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The actual transmitted signal, x(2), is related to the baseband signal, s(z), by:

x(@) = s()cosLaf,t+0),

where cos(27nf,z +0)is the carrier and @is an arbitrary phase. In the following table, the

relation between the three bandwidths: instantaneous, information and spread bandwidth, is
shown for the various spread spectrum techniques.

Relation between instantaneous, information and spread bandwidth

Spread Spectrum Technigue I ~ Bandwidths | Relative Bandwidths

DS If W, is the information Instantaneous bandwidth is
bandwidth, then NW, is the equal to the spread
spread bandwidth bandwidth
Slow Frequency Hopping Maximum bandwidth: Instantaneous bandwidth is
L+v, +f, equal to the information
Signal information (unspread) bandwidth.
bandwidth:
fotfa
Spread Time Modulation Either of above. Instantaneous bandwidth can
be equal to the spread
bandwidth or to the
_ information bandwidth.
Time Hopping pe (f —kE) Instantaneous bandwidth is
‘ equal to the individual pulse
or packet bandwidth
Near-Far Problem:

If E® is the received strength of the kth signal, then the received signal is:

(k) (k) (k)
E™b,’c,” +w,
1

K
r, =
k=

The decision variable, or correlator output, for a single transmission in the presence of
multiple users, all using orthogonal codes, is:

N K N N
M - pMOpm W42 0N A6 (1) m
y. =E"b, E(c,,)+§E b, Ec,,c,l +§w,‘c,‘
k=2

n=1 n=1 a=1

K N
= NEOBO -3 E¥p® 1+ 3 e
k=2

n=1

which shows that if E® >> E®, the spreading gain, N, may be insufficient to suppress
the multiuser interference (MUI) - the near-far problem. Two approaches are used to attack
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this problem: (1) power control of the transmitted signal to provide rough equality of
received signal strengths; (2) multi-user detection designed for the multiplicity of signals

present’’.

MultiPath Problem:

The rake receiver is a pre-detection multipath-combining receiver which mitigates
multipath in all forms of spread spectrum systems.

15 Holtzman, J.M., CDMA power control for wireless networks. In Third Generation Wireless Networks (S.
Nanda & D.J. Goodman, eds.), pp. 299-311, Kluwer Academic, 1992;

S. Ariyavisitakul & L.F. Chang, Signal and interference statistics of a CDMA system with feedback power
control. IEEE Trans. Comm., 41, 1626-1634, 1993;

Verdu, S., Recent progress in multi-user detection. In Advances in Communications and Signal Processing
(W. A. Porter & S.C. Kak, eds.), pp. 15-23, Springer-Verlag, 1989;

Duel-Hallen, A., Holtzman, J. & Zvonar, Z., Multiuser detection in CDMA systems. /EEE Personal
Communications, 2, 46-58, 1995.
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5.0 Mathematical Foundations of Orthogonal Codes

We commence with a Galois field of order equal to 2*, i.e., GF(2*). There are then
3 irreducible polynomials, 7(x), 1i.e., polynomials which are not divisible by any
polynomial over GF(2) up to degree 2/4 = 2. There are three:

1+x+x*
1+x*+x*, and
1+x+x24+x3+x*,
We choose the first:
z(x) =1+ x+x*,
and use the primitive element

x =0100

GF(2*) modulo 1+ x + x* is:

GF(2*) modulo 14 x+ x*
power polynomial 4-tuple
<0 0 0000
0 1 1000
1 X 0100
2 x2 0010
3 x3 0001
4 1+x 1100
5 x4+ x> 0110
6 x2+x° 0011
7 1+ x+ x3 1101
8 1+ x2 1010
9 x+x3 0101
10 1+ x+x2 1110
11 x+x2 +x3 0111
12 I+x+x>+x> | 1111
13 1+x2 + x3 1011
14 1+ x° 1001
15 1 1000

As this exercise is for a GF(p) field, where p = 11, we require 10, not 15, assigned
ngmbe:rs.1 5To reduce the GF(2%) field to GF(11), we add modulo 2, the 4-tuples of
XU HLx:

0111
1111
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1011
1001
1000
0110

obtaining 0110, and substitute the reciprocal, i.e., 1001, for one of the 4-tuples of
x*...x"% We choose x°. The GF(11) table is then:

GF(11) modulo 1+ x +x*
power polynomial 4-tuple
00 0 0000
0 1 1000
1 X 0100
2 o 0010
3 e 0001
4 1+x 1100
5 + 1 0110
6 1+ x3 1001
7 1+x+x° 1101
8 1+ 22 1010
9 x+ x3 0101
10 1+ x+ x2 1110

Now in order to generate more codes, a “perfect” permutation is sought which
permutes the “1” positionings of codes, but yet leaves the number of “hits” in the auto- and
cross-correlations of those codes relatively unchanged. The Zech logarithm Z(n), defined:

28 =142"
achieves that goal. The Zech logarithm permutation on GF(11) is shown in the following
table:
Zech Logarithm conversion
power 4-tuple Zech Log 4-tuple = Number

1 0100 1100 =4

2 0010 1010=8

3 0001 1001 =6

4 1100 0100 =1

5 0110 1110 =10

6 1001 0001 =3

7 1101 0101 =9

8 1010 0010 =2

9 0101 1101 =7

10 1110 0110=5
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The simplified conversion is thus:

1-4

28

356

4—1
5-10
6—3

7-9

82

97

105

Applying this Zech logarithm conversion to the hyperbolic congruence codes,
quadratic congruence codes and Welch-Costas codes, p = 11 (Tables 5.0.1, 5.0.3, 5.0.5),
gives the corresponding Tables 5.0.2, 5.0.4 and 5.0.5, below.

The hyperbolic congruence codes and their Zech logarithmic construction are
shown in Fig.s 5.0.1 and 5.0.2; the quadratic congruence codes and their Zech logarithmic
construction in Fig.s 5.0.3 and 5.0.4; and the Welch-Costas codes and their logarithmic
construction in Fig.s 5.0.5 and 5.0.6.

The method of displaying code properties involves a 3-dimensional representation
which includes one autocorrelation in the middle of a stack of crosscorrelations. For
example, in Fig. 5.0.7, is shown the autocorrelation of code #1 of the normal hyperbolic
code construction, p = 11, preceded by the crosscorrelations with the other 9 codes of the
normal construction and succeeded by crosscorrelations with the 10 codes of the Zech
Logarithm construction. Fig.s 5.0.8 and 5.0.9 are similar representations for the quadratic
congruence codes and the Welch-Costas codes, p = 11.

In contrast, Fig.s 5.0.13 shows the autocorrelation of code #1 of the Zech
Logarithm construction of the hyperbolic codes, p = 11, preceded by the crosscorrelations
with the other 10 codes of the normal hyperbolic construction and succeeded by
crosscorrelations with the 9 codes of the Zech Logarithm construction. Fig.s 5.0.14 and
5.0.15 are similar representations of the quadratic congruence and the Welch-Costas codes,
p=11

These representations were then simplified by showing only those correlations
which exceeded a value of 4, in comparison with a maximum correlation value of 10. Thus
Fig. 5.0.10 summarizes the data of Fig.s 5.0.7, 5.0.8 and 5.0.9; and Fig. 5.0.16
summarizes the data of Fig.s 5.0.13, 5.0.14 and 5.0.15.

Fig.s 5.0.11 and 5.0.12 analyze further the correlations of Fig.s 5.0.8 and 5.0.9;

and Fig.s 5.0.17, 5.0.18 and 5.0.19 analyze further the correlations of Fig.s 5.0.13,
5.0.14 and 5.0.15.
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Table 5.0.1
Hyperbolic Congruence Code, p=11, "1" Positionings

#10

10

#9

10

#8

10

#7

10

#6

10

#5

10

10

#3

10

#2

10

#1

10

Frame

10

Table 5.0.2
Zech Logarithm Hyperbolic Congruence Code, p=11, "1" Positionings

#10

10

10

#8

10

#7

10

#6

10

#5

10

10

#3

10

#2

10

#1

10

Frame

10
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Table 5.0.3
Quadratic Congruence Code, p=11, "1" Positionings

#10

10

10

10

10

#8

10

#7

10

10

#6

#5

#3

#2

#1

10

10

Frame

Table 5.0.4
Zech Logarithm Quadratic Congruence Code, p=11, "1" Positionings

#10

10

10

10

10

#8

#7

#6

10

10

#5

10

10

10

#3

#2

#1

Frame
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Table 5.0.5
Welch-Costas Code, p=11, "1" Positionings
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Table 5.0.6
Zech Logarithm Welch-Costas Code, p=11, "1" Positionings

#10

10

10

#8

10

#7

10

#6

10

#5

10

10

#3

10

#2

10

#1

10

Frame

10

53




The major results detected by this form of analysis are:

» The number of codes with good autocorrelation and crosscorrelation properties can be
increased by the use of the Zech Logarithm construction. This increase in usable codes is
particularly so in the case of hyperbolic congruence codes (see Fig. 5.0.10 and 5.0.17),
less so in the case of quadratic congruence codes (see Fig. 5.0.11 and 5.0.18), but not so
in the case of Welch-Costas codes (see Fig.s 5.0.12 and 5.0.19).

o Although the Welch-Costas codes of both the normal and the Zech Logarithm
construction have very poor crosscorrelation properties, these constructions have superior
autocorrelation properties. It is known that there is a trade between optimum autocorrelation
properties and crosscorrelation properties. The Welch-Costas codes exhibits the case of
extremely superior autocorrelation properties, but at the expense of crosscorrelation
properties, which are unacceptable.

» It is significant that the relative merits of the three normal constructions - hyperbolic
congruence, quadratic congruence and Welch-Costas - are transferred to the Zech
Logarithm constructions of those codes. That is, both the merits and demerits of the normal
constructions appear in the Zech Logarithm constructions.
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Fig. 5.0.1. Top: Hyperbolic Congruence Codes, p = 11, #1-5; Bottom: Zech Logarithm of the top codes.
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Fig. 5.0.2. Top: Hyperbolic Congruence Codes, p = 11, #6-10; Bottom: Zech Logarithm of the top codes.
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Fig. 5.0.3. Top: Quadratic Congruence Codes, p = 11, #1-5; Bottom: Zech Logarithm of the top codes.
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Fig. 5.0.4. Top: Quadratic Congruence Codes, p = 11, #6-10; Bottom: Zech Logarithm of the top codes.
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Fig. 5.0.5. Top: Welch-Costas Congruence Codes, p = 11, #1-5; Bottom: Zech Logarithm of the top codes.
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Fig. 5.0.6. Top: Welch-Costas Congruence Codes, p = 11, #6-10; Bottom: Zech Logarithm of the top codes.
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Normal vs ZechLog Hyperb.CC, Agnst Normal#l
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Fig. 5.0.7. These two plots are the plots of the same data, but at two different angles, of the autocorrelation
(center) of code #1 of the hyperbolic congruence codes, p = 11, using the normal construction, and the
crosscorrelations of this code with the 9 other codes of the normal construction and the 10 codes constructed
from the Zech Logarithm of these hyperbolic congruence codes.
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Zechlog & Normal Quadratic Congruvence Codes, Against Rormal#l
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Fig. 5.0.8. These two plots are the plots of the same data, but at two different angles, of the autocorrelation
(center) of code #1 of the quadratic congruence codes, p = 11, using the normal construction, and the
crosscorrelations of this code with the 9 other codes of the normal construction and the 10 codes constructed
from the Zech Logarithm of these quadratic congruence codes.
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ZechLogélflorm. Welch-Costas Codes, Against Norm#l
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Fig. 5.0.9. These two plots are the plots of the same data, but at two different angles, of the autocorrelation

(ceflte;) '01; code #1 of the Welch-Costas congruence codes, p = 11, using the normal construction, and the
crosscorrelations of this code with the 9 other codes of the normal construction and the 10 codes constructed

from the Zech Logarithm of these Welch-Costas congruence codes.
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A.

Normal ¥s ZechLog Hyperb.CC, Agnst Normal#l, >4
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Fig. 5.0.10. These are plot summaries of Fig.s 7, 8 and 9. Top and bottom are 3- and 2-dimensional plots of 1 autocorrelation (#10) of the first code of the
normal construction and 9 crosscorrelations of the normal construction (#1-#9) and 10 of the Zech Logarithm of the normal construction (#11-20) for those values
greater than 4 (with 10 as maximum). A: hyperbolic codes, p = 11, showing an excellent autocorrelation and excellent crosscorrelations (both for the normal and
the Zech Logarithm constructions); B: quadratic congruence codes, p = 11, showing an excellent autocorrelation and excellent crosscorrelations for the normal
constructions, with largely excellent crosscorrelations except for 1 code; C: Welch-Costas codes, p = 11, showing an excellent autocorrelation, poor

crosscorrelations for the normal construction and excellent crosscorrelations for the Zech Logarithm constructions.
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A. B. C.
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Fig. 5.0.11. These are plot summaries of Fig.s 8, i.e., 3--dimensional plots of 1 autocorrelation (#10) of the first code of the normal construction of the quadratic
congruence codes, p = 11, and 9 crosscorrelations of the normal construction (#1-#9) and 10 of the Zech Logarithm of the normal construction (#11-20) for those
values greater than A: 4, B: 5, and C: 6 (with 10 as maximum). Fig. 11A was shown in Fig. 10B, above. This figure shows that if the interference
crosscorrelation criterion is relaxed from 4 to 6, then the Zech Logarithm codes are usable.
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Fig. 5.0.12. These are plot summaries of Fig.s 9, i.e., 3--dimensional plots of 1 autocorrelation (#10) of the first code of the normal construction of the Welch-
Costas codes, p= 11, and 9 crosscorrelations of the normal construction (#1-#9) and 10 of the Zech Logarithm of the normal construction (#11-20) for those
values greater than A: 4,B: 5, C: 6, D: 7, E: 8 and F: 9 (with 10 as maximum). Fig. 12A was shown in Fig. 10C, above. This figure shows that even if the

interference crosscorrelation criterion is relaxed from 4 to 9, then theWelch-Costas codes are usable, but the Zech Logarithm of the codes might be. This hope is
denied by the analysis to follow.
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Fig. 5.0.13. These two plots are the plots of the same data, but at two different angles, of the
autocorrelation (center) of code #1 of the Zech Logarithm construction of the hyperbolic congruence codes,
p = 11, and the crosscorrelations of this code with the 9 other codes of the Zech Logarithm construction and
the 10 codes of the normal construction for hyperbolic congruence codes.
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Zechlog+norma1 Quadr.Congr.Codes, against ZechLogitl
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Fig. 5.0.14. These two plots are the plots of the same data, but at two different angles, of the
autocorrelation (center) of code #1 of the Zech Logarithm construction of the quadratic congruence codes, p
= 11, and the crosscorrelations of this code with the 9 other codes of the Zech Logarithm construction and
the 10 codes of the normal construction for quadratic congruence codes.
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ZechLogéflorm Welch-Costas Codes, Against ZechLogil
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Fig. 5.0.15. These two plots are the plots of the same data, but at two different angles, of the
autocorrelation (center) of code #1 of the Zech Logarithm construction of the Welch Costas codes, p = 11,
and the crosscorrelations of this code with the 9 other codes of the Zech Logarithm construction and the 10
codes of the normal construction for Welch Costas codes.
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Fig. 5.0.16. These are plot summaries of Fig.s 13, 14 and 15. Top and bottom are 3- and 2-dimensional plots of 1 autocorrelation (#10) of the first code of the
Zech Logarithm construction and 9 crosscorrelations of the Zech Logarithm construction (#1-#9) and 10 of the normal construction (#11-20) for those values
greater than 4 (with 10 as maximum). A: hyperbolic codes, p = 11, showing an excellent autocorrelation and excellent crosscorrelations for the normal, but less
optimum for the Zech Logarithm codes; B: quadratic congruence codes, p = 11, showing an excellent autocorrelation and excellent crosscorrelations for the normal
constructions, buts less than optimum for the Zech Logarithm codes; C: Welch-Costas codes, p = 11, showing an excellent autocorrelation, excellent

crosscorrelations for the Zech Logarithm constructions and but poor crosscorrelations for the normal constructions.
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A. B.

Normal & ZechLog Hyperb.CC, Agnst ZechLog#l, >4 Normal & ZechlLog Hyperb.CC, Agnst ZechLoghl, >3

Fig. 5.0.17. These are plot summaries of Fig.s 13, i.e., 3--dimensional plots of 1 autocorrelation (#10) of the first code of the Zech Logarithm construction of
the hyperbolic congruence codes, p = 11, and 9 crosscorrelations of the Zech Logarithm construction (#1-#9) and 10 of the normal construction (#11-20) for those
values greater than A: 4, and B: 5 (with 10 as maximum). Fig. 17A was shown in Fig. 16A, above. This figure shows that if the interference crosscorrelation
criterion is relaxed from 4 to 5, then the normal codes can be used with the Zech Logarithm codes.
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A. B.

ZechLog+Norm.Quadr.CCs, Against ZechLog#l, >4 ZechlLog+Norm.Quadr .CCs, Against ZechLog#l, >5

Fig. 5.0.18. These are plot summaries of Fig.s 14, i.e., 3--dimensional plots of 1 autocorrelation (#10) of the first code of the Zech Logarithm construction of
the quadratic congruence codes, p = 11, and 9 crosscorrelations of the Zech Logarithm construction (#1-#9) and 10 of the normal construction (#11-20) for those
values greater than A: 4, and B: 5 (with 10 as maximum). Fig. 18A was shown in Fig. 16B, above. This figure shows that if the interference crosscorrelation
criterion is relaxed from 4 to 5, then the normal codes can be used with the Zech Logarithm codes.
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Fig. 5.0.19. These are plot summaries of Fig.s 15, i.e., 3--dimensional plots of 1 autocorrelation (#10) of the first code of the Zech Logarithm construction of
the Welch-Costas codes, p = 11, and 9 crosscorrelations of the Zech Logarithm construction (#1-#9) and 10 of the normal construction (#11-20) for those values
greater than A: 4; B: 5; C: 6; D: 7; E: 8; and F: 9 (with 10 as maximum). Fig. 19A was shown in Fig. 16C, above. This figure shows that even if the
interference crosscorrelation criterion is relaxed from 4 to 8, the normal codes cannot be used with the Zech Logarithm codes.
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6.0 Fourier Analysis Treatment of Orthogonal Codes.

Introduction:

The goal of achieving extremely high data rate communications transmissions is
dependent a great deal on the ability to recognize and lock-on to codes which either define a
channel or a user. There are numerous electronic methods for achieving auto- and cross-
correlations of superframes of time-hopping pulses, but, in optical communications, the
transduction from the optical to the electronic modalities can result in delays, if not
bottlenecks. Therefore, the possibility of using optical matched filter methods to achieve
code detection should be explored.

The use of optics in communications is not new - for example Ref' - and the use of
optics in temporal signal processing in radar is well-known2. However, here we show that
it is possible to take time-hopping codes and achieve optical auto- and cross-correlations the
signal-to-noise of which is sufficient for use in communications channels.

The auto-correlation of a function, s(x,y),is defined by:

F&.Y) = [[sEms*E-x ,n-y)dgan.
The cross-correlation of two functions, s(x, y) and g(x,y), is:

+o00

f@.¥)= [[a&ms*E&-x.n-y)dedn.

—00

In both cases, the integrals are weighted sums, where one function is used to weight the
values of the other. If three functions are related as they are in the auto- and cross-
correlation expressions, above, then their respective Fourier transforms are related as
follows:

F(v,,v,)=S(v,,v))S *(v,,v)),
F(v,,v,)=GV,,v))S*(v,,v)).

It is well-known that spherical lenses produce the Fourier transform of an input
image at the back focal plane®. A frequency-plane correlator utilizes a hologram spatial filter
whose transmittance is described by S* and when light represented by S (for auto-
correlation) or G (for cross-correlation) is passed through the filter, it is modulated by S*.
A second lens takes the inverse Fourier transform, resulting in f(x,y) at the output plane*
(Fig. 1). Any bright spot on the output plane indicates a high correlation value®’. From an

' J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968.

2 Cf. Part I1I of Homer, J.L. (Ed.) Optical Signal Processing, Academic, NY, 1987.

? Rhodes, J.E., Analysis and synthesis of optical images. Am. J. Phys., 21, 337-343, 1953.

* Cutrona, LJ., Leith, ENN., Palermo, C.J. & Porcello, L.J -» Optical data processing and filtering systems.
IEEE Trans. Information Theory, IT-6, 386-400, 1960;

VanderLugt, A.B., Signal detection by complex spatial filtering. IEEE Trans. Information Theory, IT-10,
139-145, 1964;

Kozma, A. & Kelly, D.L., Spatial filtering for detection of signals submerged in noise. Applied Optics 4,
387-392, 1965.

VanderLugt, A.B., Coherent optical processing. Proc. IEEE, 62, 1300-1319, 1974.

% Casasent, D., Coherent optical pattern recognition. Proc. IEEE, 67, 813-825, 1979;
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optical perspective, both the operations of correlation and convolution are similar.
However, strictly speaking the convolution ogeration also involves a folding operation,
which is not present in the correlation operation”.

If the input to the correlator is s(x,y), i.c., the input is correlated with the filter,
then after modulation by the filter we have S(v,,v,)S *(v,,v,). But, after passing through

a first lens, this is the squared modulus of S, which is a real positive value, indicating that
the phase across the output beam is constant, i.e., the output from the filter is a plane wave.
But a plane wave input to a second lens is focused to a point on the correlation plane. Thus,
the effect of this optical analog correlator is to concentrate the energy of a signal correlated
with the filter to a point, while leaving the noise smeared, i.e. increasing the signal-to-noise
of the correlated signal.

In terms of linear systems, the description is in terms of the impulse response,
which is:

h(x,,X,¥)=s*(x—x',y=Y),
or, simplified:
h(x,y) = s* (=x,=Y)-
In this description, the filter is said to be matched to the signal s”.

If an input, g(x,y),is applied to a filter matched to , then the output, is:
foe.y) = [ [rx =&y -mg&madédn

= [[e&ms*E-x.n~y)dkdn
which is the previously stated cros;conelation. It is well-known that, if a signal of known
form, buried in “white” noise, is to be detected, then a matched filter provides the linear
operation which maximizes the ratio of instantaneous signal power (at a particular time) to

average noise power".

Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, 1968, p. 179;

Feitelson, D.G., Optical Computing, MIT Press, 1988.

6 Proakis, J.G. & Manolakis, D.G., Digital Signal Processing Principles, Algorithms and Applications,
Macmilian, New York, 1992.

7 Turin, G.L., An introduction to matched filters. IRE Trans. Information Theory, IT-6, 311-329, 1960;
Turin, G.L., An introduction to digital matched filters. Proc. IEEE 69, 79-92, 1976.

8 Elias, P., Optics and Communication Theory, J. Opt. Soc. Am., 43, 229, 1953;

O’Neill, E.L., Spatial filtering in optics. IRE Trans. Inform. Theory, IT-2, 56, 1956;

Cutrona, L.J., Leith, EN., Palermo, C.J. & Porcello, L.J., Optical data processing and filtering systems.
IEEE Trans. Information Theory, IT-6, 386-400, 1960;

Cutrona, L.J., Leith, EN., Palermo, C.J. & Porcello, L.J., On the application of coherent optical
processing techniques to synthetic-aperture radar. Proc. IEEE, 54, 1026, 1966;

Stroke, G.W. & Funkhouser, A.T., Fourier-transform spectroscopy using holographic imaging without
computing and with stationary interferometers. Phys. Lett., 16, 272, 1965;

Kovasnay, L.S.G. & Arman, A., Optical autocorrelation measurement of two-dimensional random patterns.

Rev. Sci. Instr., 28, 793, 1957,
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If a filter is required matched to an input signal, s(x,y), then the required transfer
function for a mask is:

H(f..f,)) =S*(f..1,)-

With s(x,y), as input and its Fourier transformation $* incident on the mask, the output
transmitted by the mask is SS*, which is entirely real, i.e., all curvature of the incident
wavefront § is canceled. Therefore, as explained before, this plane wavefront can then be
brought to a bright focus by a final lens.

On the other hand, if a signal other than s(x,y) is input, e.g., g(x,y), the
wavefront curvature will not be canceled by the mask and the wavefront will not be brought
to a sharp focus by a final lens. Thus, the presence of the signal, s(x,y), can be detected
by measuring the intensity of light at the focal point of a final transforming lens.

input image lens Fourier filter lens ouput plane

gEm) ! fx”.y")
e )-:\ —p
£ \ £

G(Vx,\’y) S *(Vx,Vy)

Fig. 6.1. Typical structure of an image correlator. f is the focal length of the lenses. In the case of Fig.s 2,
5 and 8. below, the lenses are 1-D cylindrical. In the case of Fig.s 3, 4, 6, 7, 9 and 10 below, the lenses
are 2-D cylindrical.

In the following, we apply these principles to determine whether all-optical methods
can be implemented to rapidly detect time hopping codes in optical fibers. We address three
types of orthogonal codes:

(1) Hyperbolic Congruence Codes, p = 11, (Table 6.1).
(2) Quadratic Congruence Codes, p = 11, (Table 6.2).
(3) Welch-Costas Codes, p = 11, (Table 6.3).

Trabka, E.A. & Roetling, P.G., Image transformations for pattem recognition using incoherent
illumination and bipolar aperture masks. J. Opt. Soc. Am., 54, 1242, 1964;

Armitage, J.D. & Lohmann, A.W., Character recognition by incoherent spatial filtering. Appl. Opt., 4,
461, 1965;

VanderLugt, A.B., Signal detection by complex spatial filtering. IEEE Trans. Inform. Theory, IT-10, 2,
1964;

Kozma, A. & Kelly, D.L., Spatial filtering for detection of signals submerged in noise. Appl. Opt., 4,
387, 1965.

76



A specific objective is to determine whether optical auto- and cross-correlation methods
provide sufficient signal-to-noise to compete with electronic digital methods not only in
speed but also in accuracy.

77




Table 6.1
Hyperbolic Congruence Code, p=11, "1" Positionings

#10

10

#9

10

#8

#7

10

#6

10

#5

10

10

#3

10

#2

10

Table 6.2
Quadratic Congruence Code, p=11, "1" Positionings

#10

10

10

#9

10

10

#8

#7

10

10

#6

#5

#3

#2
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Table 6.3
Welch-Costas Code, p=11, "1" Positionings
Frame #1 #2 #3 #4 #5 #6 #7 #8 #9 | #10
1 2 4 6 8 10 1 3 5 7 9
2 4 8 1 5 9 2 6 10 3 7
3 8 5 2 10 7 4 1 9 6 3
4 5 10 4 9 3 8 2 7 1 6
5 10 9 8 7 6 S 4 3 2 1
6 9 7 5 3 1 10 8 6 4 2
7 7 3 10 6 2 9 5 1 8 4
8 3 6 9 1 4 7 10 2 5 8
9 6 1 7 2 8 3 9 4 10 5
10 1 2 3 4 5 6 7 8 9 10

The results are shown in Fig.s 6.2-6.10:

Fig. 6.2 shows the auto- and cross-correlations for Hyperbolic Congruence codes #1 and
#2, p = 11 using wedge Fourier transforms.

Fig.s 6.3 and 6.4 show the auto- and cross-correlations for Hyperbolic Congruence codes
#1 and #2, p = 11 using 2D- Fourier transforms.

Fig. 6.5 shows the auto- and cross-correlations for Quadratic Congruence codes #1 and
#2, p = 11 using wedge Fourier transforms.

Fig.s 6.6 and 6.7 show the auto- and cross-correlations for Quadratic Congruence codes
#1 and #2, p = 11 using 2D- Fourier transforms.

Fig. 6.8 shows the auto- and cross-correlations for Welch Costas codes #1 and #2, p = 11
using wedge Fourier transforms.

Fig.s 6.9 and 6.10 show the auto- and cross-correlations for Welch Costas codes #1 and
#2, p = 11 using 2D- Fourier transforms.

Clearly, this optical (analog) method according to these results provides signal-to-
noise levels equal to that of electronic (digital) methods. The cross-correlation of Welch-
Costas codes is known to be inferior, and this is clearly shown in Fig.s 6.8C and 6.10. In
the case of the other two codes, the Hyperbolic Congruence and the Quadratic Congruence,
the results are superior.
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Hyperbolic C. Code, p=11, Auvto-corr.#i
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Fig. 6.2. A. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
B. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.
C. Cross-correlation of Hyperbolic Congruence Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.
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avto-Corr Hyperbolic C.C.p=11, Codes#i&l

Auto-Corr.Hyperbolic C.C.p=11, Codes#1&l auto-Corr.Hyperbolic C.C.p=11, Codes#1&l
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Fig. 6.3.

A. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 using a 2D-Fourier Transform (double cylindrical lens) and inverse Fourier Transform.
B. Same data as A, but viewed from above as a contour plot with shading. _

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Cross—Corr.Hyperbolic C.C.p=11, Codes#ié

A. B. C.

Fig. 6.4.

A. Cross-correlation of Hyperbolic Congruence Code, p = 11, Codes #1 and #2 using a 2D-Fourier Transform (double cylindrical lens) and inverse Fourier
Transform.

B. Same data as A, but viewed from above as a contour plot with shading.
C. Same data as A and B, but viewed from above as a contourplot without shading.
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Quadratic C. Code, p=11, Auvto-corr.#1
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Fig. 6.5. A. Auto-correlation of Quadratic Congruence Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
B. Auto-correlation of Quadratic Congruence Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.
C. Cross-correlation of Quadratic Congruence Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.
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duto-Cory. Quadratic C.C. p=11, CodesH#lé2
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Fig. 6.6

A. Auto-correlation of Quadratic Congruence Code, p = 11, Code #1 using a 2D- Fourier Transform (double cylindrical lens) and inverse Fourier Transform.
B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Cross-Corr. Quadratic C.C. p=11, Codes#lé&2
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Fig. 6.7

>.OSmm-oo_..d_mno:%OE&mmoOo:m:_o:ooOoa@,hn:.Ooaom#_m:axwzw:.mmMU-moEwan,_,Bzmmo_.EEo:v_mnw_iglnm__asmvmaiéammoﬁan
Transform. :

B. Same data as A, but viewed from above as a contour plot with shading.
C. Same data as A and B, but viewed from above as a contourplot without shading.
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Welch Costas Code, p=11, Auto-corr.#l Welch Costas Code, p=11, Cross—corr.#15#2
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Fig. 6.8 A. Auto-correlation of Welch-Costas Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
B. Auto-correlation of Welch-Costas Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.
C. Cross-correlation of Welch-Costas Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.




duto-Corr . Welch-Costas C.p=11, Codes#lé2
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Fig. 6.9

A. Auto-correlation of Welch-Costas Code, p = 11, Code #1 using a 2D- Fourier Transform (double cylindrical lens) and inverse Fourier Transform.
B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Cross-Cory .Welch-Costas C.p=11, Codes#iél
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Fig. 6.10

A. Cross-correlation of Welch-Costas Code, p = 11, Codes #1 and #2 using a 2D-Fourier Transform (double cylindrical lens) and inverse Fourier Transform.
B. Same data as A, but viewed from above as a contour plot with shading.

C. mmia data as A and B, but viewed from above as a contourplot without shading.
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7. Bit Error Rate Analysis

High data rate transmission is dependent not only on the use of coding schemes but
on optimum system components. The system components are subject to figure-of-merit
constraints defined by variables of the system. The following is the commencement of an
analysis which examines the derivation of the most important variables and the relationship
of such variables to state-of-the-art components.

Signal

I

f t\ P(0/1)
Ip

@
’ s Io '[P(]/O)

-—
D

Time (
| |

Fig. 7.1 Left: Time-dependent fluctuating signal generated in the receiver in response to a digital PCM bit
stream. Signal is sampled at the instant t;, by decision circuit and compared with a threshold level I,. Right:
Gaussian probability distributions centered at the average signal level I, and I,. Dashed region shows the
probability of incorrect identification when I, falls below I, or I, exceeds Iy, From’.

Signal

>
Probability

The Bit Error Rate (BER) or probability of error is defined as:
BER = p(1)P(0/1)+ p(0)P(1/0),

(see Fig. 7.1) where p(1) and p(0) are the probabilities of receiving a “1” or a “0”,
respectively, P(0/1) is the probability of the receiver deciding “0” when “1” is received, and
P(1/0) is the probability of the receiver deciding “1” when “0” is received. In a pulse-code
modulated bit stream, “1” and “0” are equally likely to occur, so p(I1) = p(0) = 0.5. The
BER is thus:

BER =0.5[P(0/1)+ P(1/0)].

% Koch, T. A. & Kaminow, 1. P. (Ed.s) Optical Fiber Telecommunications, Academic, New York, 1997,
Vol.s III.
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Now the shot noise, i,, of avalanche photodiodes (APDs) is not described by a
simple analytic probability density function'®. An approximation is to treat i, as a Gaussian

random variable but with an adapted variance 6. The thermal noise, on the other hand, is
well described by Gaussian statistics with zero mean and variance o72. Therefore, the

sampled value, I, has a Gaussian probability density function with variance ¢° = 67 + o7,

but the average and variances are different for bit “1” and bit “0”, resulting in the
conditional probabilities:

1 % |-y, 1 (1-I
rom= i forl Lol b Len{ )

00

B S o (2 ) P G A0
P(l/())—o_oml‘[exp 20_(;;, P—ze'fc[al'\/i >

where erfc is the complimentary error function'':

erfc(x) = —\%_;jexp[—yz]dy .

Substitution gives:

1 I -1 I,-1
BER = —| erfc| —2 |+ erfc| 2—=2 ||,
sl
indicating that the BER depends on the decision threshold I,,. Therefore, I,, is minimized to
optimize the BER. A minimum occurs when /,, satisfies:

(11 "ID) - (ID "Io) =Q.

0, Oy

As

_ o,l,+ 0,1,

I,
O, +0;

(A)

if o, = 6y, I, = (I, +1,)/2, which occurs when the decision threshold is set at midpoint.
However, in the case of APD receivers, the shot noise is larger for bit “1” than bit “0”,
since o’varies linearly with the current. Therefore, the BER for APD receivers can be
minimized by setting the decision threshold in accordance with Eq. (A).

10 McIntyre, R.J., IEEE Trans. Electron. Dev., ED-13, 164, 1966;

Webb, P.P., McIntyre, R.J. & Conradi, J., RCA Rev., 35, 235, 1974;

MclIntyre, R.J., IEEE Trans. Electron. Dev., ED-19, 703, 1972;

Balaban, P., Bell System Tech. J., 55, 745, 1976;

Personick, S.D., Balaban, P., Bobsin, J.H. & Kumar, P.R., IEEE Trans. Commun., COM-25, 541, 1977.
11 Ambramowitz, M. & Stegun, L.A., Eds., Handbook of Mathematical Functions, Dover, New York,
1970.
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The BER with optimum setting of the decision threshold is then:
1 0\ exp[-Q°/2]
BER = —erfc| —= | = ———=—,
sl &) o
with Q defined as:

_ Lk
0,+0,

Fig 7.2 shows the variation of BER as a function of Q. For Q = 6, the BER is 10?; and for
0 >7, the BER < 10

Bit Erxror Rate

10000
1
0.0001

1.x107°

-12

1.X10

\\8: e

Fig. 7.2 BER versus the Q parameter.

Extinction Ratio:
If P, is the “off” state power and P, is the “on” state power, then the extinction ratio
is:

o =F/Hh
P, is not zero as some power is emitted by most transmitters even in the “off” state due to
the “off” state power depending on bias current and threshold current. In fact, P, can be a
significant fraction of P, if the laser is biased close to, or above, threshold.

Using the definition of receiver sensitivity:

P (P, +P0)

rec
2

2

the parameter Q is:
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rec

1-r, 2RP,

l1+r, 0,+0,
where R is the receiver responsivity.

The receiver sensitivity is then defined:

_1+r, 0,0
1-r. R’

ex

EZC (rex )

where o7 is the square root of the variation in the current due to thermal fluctuations. This
result indicates that the receiver sensitivity increases, when the extinction ratio is not equal
to zero. The minimum average optical power required by a receiver increases because of
nonideal conditions, this increases being called the power penalty, defined:

aex — }-_,Lec (rex) ,
F..(0)

or, in decibels:

P (r.) 1+r
0. =10log, | =2 |=10lo =3
ex gw( P,ec(O)J glo(l_r )

ex

Fig. 7.3 shows the power penalty increasing with an increasing extinction ratio. It can be
seen that the power penalty is significant if the laser is biased above threshold.
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—

Fig. 7.3 Power penalty versus extinction ratio.

Intensity Noise:
Fluctuations in light emitted by the transmitter is called intensity noise. The optical

receiver converts power fluctuations into current fluctuations which add to those resulting
from shot noise and thermal noise. This results in a degradation of the SNR.
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The total current variance is then
o’ =o0’+0.+07,

where

The parameter, r,, is a measure of the noise level of the incident optical signal, and
defined:

It is related to the relative intensity noise (RIN) of the transmitter by:
7= ]:RIN(a))dw
" om -
Thus, r, is simply the inverse of the SNR of light emitted by the transmitter. Normally, the

transmitter SNR is better than 20 dB, so r; < 0.01.

The parameter, Q, is reduced in the presence of intensity noise, and the receiver
sensitivity becomes:

= o, + gAfQ*
O

The power penalty defining an increase in the receiver sensitivity when the intensity noise
parameter is greater than zero, is then:

8, = 10log, [P, (,)/ P, .(0)] = —10log,,(1-r'Q?).

Fig. 7.4 shows that the power penalty as a function of the intensity noise parameter for
maintaining Q = 6 (i.e., a BER of 10”) is negligible for r, < 0.01 (as &, is below 0.02
dB).’ The power penalty only becomes a limiting factor if 7, exceeds 0.1 (when the power
penalty becomes almost 2 dB).
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Fig. 7.4 Power penalty versus the intensity noise parameter, r,.

Timing Jitter:

The decision instant for signal reception shown in Fig. 1 is dependent on the clock-
recovery circuit. If the input to the clock-recovery circuit is noisy, the sampling time
fluctuates around its mean value set at the bit center. These fluctuations are called timing
jitter.

If the probability density function of the timing jitter, Az, is assumed to be
Gaussian, it is described by:

p(Ar) =

L (e
'L'jw/27r P 222 1

J

where 7; is the standard deviation of Ar. The probability density of current fluctuation, Aj is
then:

. e Ai,
p(A}) = (mbALL) ™ Zexp[—-zl—’),

1

where
4
b=(r"- 6)(Br;)".

The receiver sensitivity is then:

= o0 1-b/2
P, (b)=—E ,
rec( ) R (1_b/2)2_b2Q2/2
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and the power penalty is:

P,.(b) 1-b/2
; = 10log,, =*—— =101 .
J 0810 P (0) Ogm((l_b/z)z —szZ/ZJ

rec

Fig. 7.5 plots power penalty as a function of the parameter B, which is the fraction of the
bit period over which the decision time fluctuates. It can be seen that a 2 dB power penalty

occurs for B’L}= 0.16.
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Timing Jitter Parameter, Bxtan

Fig. 7.5 Power penalty versus the timing jitter parameter Bz,

Orthogonal Codes: Hub Systems:

A high speed hub system is dependent on the capability of recognizing and locking-
on to codes which either define a channel or define a user. Three code constructions are
analyzed: the hyperbolic congruence codes (Table 7.1), the quadratic congruence codes
(Table 7.2) and the Welch-Costas codes (Table 7.3) - all forp = 11.

Table 7.1
Hyperbolic Congruence Code, p=11, "1" Positionings
Frame #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
1 1 2 3 4 5 6 7 8 9 10
2 6 1 7 2 8 3 9 4 10 5
3 4 8 1 5 9 2 6 10 3 7
4 3 6 9 1 4 7 10 2 5 8
5 9 7 5 3 1 10 8 6 4 2
6 2 4 6 8 10 1 3 5 7 9
7 8 5 2 10 7 4 1 9 6 3
8 7 3 10 6 2 9 5 1 8 4
9 5 10 4 9 3 8 2 7 1 6
10 10 9 8 7 6 5 4 3 2 1
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Table 7.2
Quadratic Congruence Code, p=11, "1" Positionings
Frame #1 #2 #3 #4 #5 #6 #7 #8 #9 | #10
1 1 2 3 4 5 6 7 8 9 10
2 3 6 9 1 4 7 10 2 5 8
3 6 1 7 2 8 3 9 4 10 5
4 10 9 8 7 6 5 4 3 2 1
5 4 8 1 5 9 2 6 10 3 7
6 10 9 8 7 6 5 4 3 2 1
7 6 1 7 2 8 3 9 4 10 S
8 3 6 9 1 4 7 10 2 5 8
9 1 2 3 4 5 6 7 8 9 10
Table 7.3
Welch-Costas Code, p=11, "1" Positionings
Frame #1 #2 #3 #4 #5 #6 #7 #8 #9 | #10
1 2 4 6 8 10 1 3 5 7 9
2 4 8 1 5 9 2 6 10 3 7
3 8 5 2 10 7 4 1 9 6 3
4 5 10 4 9 3 8 2 7 1 6
5 10 9 8 7 6 5 4 3 2 1
* 6 9 7 5 3 1 10 8 6 4 2
7 7 3 10 6 2 9 5 1 8 4
8 3 6 9 1 4 7 10 2 5 8
9 6 1 7 2 8 3 9 4 10 5
10 1 2 3 4 5 6 7 8 9 10

Using a Fourier and inverse Fourier wedges, auto-correlations, cross-correlations
and auto-correlations in the presence of another code are shown in Fig.s 7.6, 7.7 and 7.8
for the hyperbolic congruence, quadratic congruence and the Welch-Costas codes. What is
shown is that the optical method performs well in the interfering presence of only one other
code. The inferior cross-correlation performance of the Welch-Costas code (Fig. 7.8C) is
to be expected.

Fig.s 7.9, 7.10 and 7.11 show the identification/recognition of 4 codes using 2-D
Fourier, 2D-inverse Fourier and filter optics for the hyperbolic congruence, quadratic
congruence and Welch-Costas codes, respectively. Again, the optics method performs well
in identifying/recognizing 4 codes. However, quite a different picture is provided by the
following:

Fig.s 7.12-7.16 show 2D-auto-correlations of the hyperbolic congruence code #1
with codes #1+...+#2, #1+...+#3, #1+.. #4, #1+.. . +#5 and #1+...4+#6. Fig.s show 1D-
auto-correlations of the #1 code with Code #1 with codes #1+...4+#2, #1+...+#3,
#1+...+#4, #1+. . HH#5, #1+4.4+#6, #1447, #1+.+#8, #1+..+#9, and #1+...+#10.
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These results clearly show that the decision-making capability of the optical method is
finally overwhelmed by the presence of the other orthogonal codes.

The reason for this ultimately poor performance is inherent in the optical method.
Fourier optics is a global method and there is no filtering prior to the performance of the
identifying transformations. The optical method is a global (in time) matched filtering
method. Better performance can be obtained with a local (in time) matched filtering method
which screens (i.e. blocks) the presence of other nonlocal codes. Such a method would
involve electronic on-off switching.
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Fig. 7.6 A. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
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B. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.
C. Cross-correlation of Hyperbolic Congruence Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.
D. Identification of Hyperbolic Congruence Codes #1 and #2 in noise using Fourier optics and filters.
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Fig. 7.7 A. Auto-correlation of Quadratic Congruence Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
B. Auto-correlation of Quadratic Congruence Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.

C. Cross-correlation of Quadratic Congruence Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.
D. Identification of Quadratic Congruence Codes #1 and #2 in noise using Fourier optics and filters.
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Fig. 7.8 A. Auto-correlation of Welch-Costas Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform.
B. Auto-correlation of Welch-Costas Code, p = 11, Code #2 using a wedge Fourier Transform and inverse Fourier Transform.

C. Cross-correlation of Welch-Costas Code, p = 11, Codes #1 & #2 using a wedge Fourier Transform and inverse Fourier Transform.
D. Identification of Welch-Costas Codes #1 and #2 in noise using Fourier optics and filters.
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A. Matched filter identification of Hyperbolic Congruence Codes, p = 11
inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.
C. Same data as A and B, but viewed from above as a contourplot without shading.

, Codes #1, #2, #3 and #4 using a 2D-Fourier Transform (double cylindrical lens),
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Fig. 7.10

A. Matched filter identification of Quadratic Congruence Codes, p = 11, Codes #1, #2, #3 and #4 using a 2D-Fourier Transform (double cylindrical lens), inverse
Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading
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tatched £filt.Welch-Costas C.p=11,Codes#1i2
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Fig. 7.11

A. Matched filter identification of Welch-Costas Codes, p = 11, Codes #1, #2, #3 and #4 using a 2D-Fourier Transform (double cylindrical lens), inverse Fourier
Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Auto-Corr .Hyperbol .C.C.p=11 %1 & #1+...+#2

Auto-Corr .Hyperbol.C.C.p=11 ,#1 & #1+...+#2
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Fig. 7.12 A. Matched filter identification of Hyperbolic Congruence Code, p = 11, Code #1, in the presence of Codes #1...#2 using a 2D-Fourier Transform
(double cylindrical lens), inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Fig. 7.13 A. Matched filter identification of Hyperbolic Congruence Code, p = 11, Code #1, in the presence of Codes #1...#3 using a 2D-Fourier Transform
(double cylindrical lens), inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.

105

NS




Auto-Cory . Hyperbol .C.C.p=11,#1 & #1+.. .+#4
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Fig. 7.14 A. Matched filter identification of Hyperbolic Congruence Code, p = 11, Code #1, in the presence of Codes #1....#4 using a 2D-Fourier Transform
(double cylindrical lens), inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Fig. 7.15 A. Matched filter identification of Hyperbolic Congruence Code, p = 11, Code #1, in the presence of Codes #1....#5 using a 2D-Fourier Transform
(double cylindrical lens), inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Auto-Corr . Hyperbol.C.C.p=11,#1 & #1+...+#6
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Fig. 7.16 A. Matched filter identification of Hyperbolic Congruence Code, p = 11, Code #1, in the presence of Codes #1....#6 using a 2D-Fourier Transform
(double cylindrical lens), inverse Fourier Transform and filters.

B. Same data as A, but viewed from above as a contour plot with shading.

C. Same data as A and B, but viewed from above as a contourplot without shading.
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Fig. 7.17 A. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 using a wedge Fourier Transform and inverse Fourier Transform against itself,

Code #1.

B. Auto-correlation of Hyperbolic Congruence Code, p
C. Auto-correlation of Hyperbolic Congruence Code, p
D. Auto-correlation of Hyperbolic Congruence Code, p
E. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#5.
F. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#6.
G. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#7.
H. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#8.
1. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#9.

11, Code #1 against Codes #1+...+#2.
11, Code #1 against Codes #1+...+#3.
:.Ooao&:mm»imﬁnoaomﬁf:tﬁ.
H
~

J. Auto-correlation of Hyperbolic Congruence Code, p = 11, Code #1 against Codes #1+...+#10.
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8.0 Shannon’s Theorem Constraints

Shannon’s channel capacity theorem gives the relation:

RE
c. log,| 1+ —2% |,
B N,B

where E, is the energy per bit: E, = S/R, S is the average power, R is the data rate in information
bits per second, N, is noise in Watts/Hertz and N=N,B. B is general bandwidth.

Shannon’s theorem also requires:

commensurate with an acceptable BER, which means, applying Shannon’s theorem, that:

r <log, 1+r£”— or ﬂ>2 _1.
N, N, r

Now in the case of (1) a WDM channel or (2) multibit pulses or packets, the analogy of
optical fiber transmissions to RF communications is close. If the fiber has a maximum bandwidth
B, then a decision must be made concerning whether that bandwidth is used by multibit packets -
we call that a “parallel” bandwidth, B, - or by different WDM channels - we call that “sequential”
bandwidth, B,. (An analogous procedure is overseen by the Federal Communications
Commission in allocating blocks of RF bandwidth to individual users.)

Therefore, if there is less energy per bit, then B, is high. This case may be contrasted
with that of less delay per bit, which means that the sampling bandwidth, B, is high. But there
is a finite bandwidth, B, and the allocated bandwidth B, must not encroach on the allocated B,
bandwidth. The general bandwidth, B, is thus related to the “WDM bandwidth” and the “multibit
packet bandwidth”, by: ~

B =B, +B,.
The trades that can be made - up to the Shannon capacity boundary limit, R = C, are

shown in Fig. 1. Given a constant general bandwidth B, there is a constant condition represented
by:

R N,
—.— = const.,
B'E,

which in the case of WDM channels with multibit packets, is:
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R N,

—(E::E;)'.—E:' = const.

The following is thus indicated:

The spectral bit rate, 7, can be increased to approach a maximum set by the Shannon limit
(i.e., a maximum with an acceptable BER). Given a constant general bandwidth B, with
allocation to either WDM usage, or, multibit packet usage, or both, such that B =B, + B, then:

(1) The data rate, R, can be increased, but, in compensation, N,/E, must be decreased (i.e.,
E,/N, must be increased).

Alternatively, the following method gives better BER, but pays a price in spectral data
rate: :

(2) N,JE, can be increased (i.e., E,/N, can be decreased), but, in compensation, the data rate, R,
must be decreased.

As the objective is high data rate, method (1) is preferred.

Bandwidth Efficiency
5 Capacity boundary, R=C for C/B = log2 (1+(R/B)(E/N))
4

a

z 3

I

L ]

5 2 PE vs E/N trades PE versus R/B trades
5 < >
s
E: =
- =0.693 (bandwidth unlimited) Shannon Limit
2 o

£
k=
s
-2
| 1 I2 I3 l 4 | 5 { 6
E/N (Bit Energy/Noise Energy)
Fig.8.1

B =Bandwidth = B, + B,,
B, = parallel bandwidth or bandwidth per packet for multibit packets,
B, = sequential bandwidth or WDM bandwidth,
N = noise energy,
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R = bit rate,
r = bandwidth efficiency = R/B,
C = channel capacity.
The objective is to maximize 7 under the R = C constraint The optimizing conditions are:

R N R

E—E— = m-E— = const.

Avalanche Photodiode Receivers

Avalanche photodiode (APD) receivers provide a higher SNR for the same incident
power due to an internal gain which increases the photocurrent by a multiplication factor, M:

I,=MRP

in?

where /, is the photocurrent, P,, is the incident optical power, R is the responsivity of the

photodector (= hvig X the quantum efficiency) and M is a multiplication factor. In the case of
APD receivers, besides the shot noise from the generation of primary electron-hole pairs, there is
also that associated with the generation of secondary electron-hole pairs.

The total shot noise variance for an APD is:
o? = 2gM*F,(RP, + 1,)Af,
where I, is the dark current, Af is bandwidth and F, is the excess noise factor of the APD:

F (M) = kM +(1—k)(2—-1/M).

In this last equation, k, = o, /oL, if o, < @, but k, = o /o, when o, > 0., where o, and o, are
defined by the electron current and the hole current:

g, ..
E =aQr +o,

di, ..
-E =, + 0,0,

The following Fig. 8.2 shows the dependence of the excess noise factor, F,, as a function of the
APD gain, M, and of the dimensionless parameter, k,.'* This Figure shows that for the minimum
excess noise factor, the ratio k, should be as small as possible.

12 Webb, P.P., McIntyre, R.J. & Conradi, J., RCA Rev., 35, 235, 1974.
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Fig. 8.2 Excess noise factor F, as a function of the average APD gain M for the following values of the
ionization-coefficient ratio k, (top to bottom): 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005 and 0.

The SNR for APD receivers is optimum for an optimum, M, of the APD gain M

defined:
aTF )
Mopr - B » .
k.qR, (RPin +1 d)

The following Fig. 8.3 shows that M, , decreases with a decrease in P, and is also sensitive to
the coefficient ratio, k,.> This Figure was constructed for R, = 1 kohm, F, =2, R =1 A/W and
I,=2 nA and for a 1.55 pm InGaAs receiver.
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Fig. 8.3 Optimum APD gain M,, as a function of the incident optical power P;, for several values of k,: 0
(dashed), 0.001, 0.01, 0.1 and 1.0 (bottom). Parameter values corresponding to a typical 1.55 um InGaAs APD
receiver were used.

13 Agrawal, G.P., Fibver-Optic Communication Systems, 2nd Edition, Wiley, NY, 1997.
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Bit Error Rate and Q

The bit error rate (BER) in the Gaussian approximation is:

1 (0)_exp(=0*/2)
BER'ze'fc(Ji) ov2r

where Q, for “1” and “0” bits is:

—_ Il +12
c,+0,

Q

The following Fig. 8.4 shows the variation of the BER as a function of the Q parameter.

Bit Error Rate
1p
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l.X10 +
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Fig. 8.4 Bit-error rate versus the Q parameter. Line at BE = 107 intersects curve at Q = 6.

8.1 Power Penalties

8.1.1
Semiconductor lasers still emit power, P,, in the off state, resulting in a power penalty. If
P, is the on-state power, then an extinction ratio is defined as:

rex = })0/ I)l'
A definition of receiver sensitivity is:
— PB+PF
R‘ec = . 2 i ?

which permits a definition of the power penalty:

Pe(r) 1+7,
5, = 1010g10(—m} = 1010g10(-——}.
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The following Fig. 8.1.1 shows the dependence of the power penalty on the extinction ratio.
Typically, r,, is below 0.05 and the power penalty is negligible (< 0.4 dB). However, the power
penalty can becomes significant if the semiconductor laser is biased above threshold.
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Fig. 8.1.1 Power penalty versus the extinction ratio r,,.

8.1.2

Light emitted by any transmitter exhibits power fluctuations known as intensity noise.
The optical receiver converts power fluctuations into current fluctuations which add to those
resulting from shot noise and thermal noise. One approach to an analysis of the composite noise
influences on the receiver is to add the variances:

o’ =o0’+0l+07,
where
o, = R((F2)) " =RP.1;,
and
r,={(aP2)) " 1P,
is a measure of the noise level of the incident optical signal.

The power penalty, which is the increase in P, when r, #0 is:

rec

8, =101og,[P,..(n)/ F,,.(0)] = ~10log,, (1= 77 Q")
The following Fig. 8.1.2 shows the power penalty as a function of intensity noise parameter for
maintaining O = 6 (i.e., BER = 10”)." For most optical transmitters 7, < 0.01, so the power
penalty is negligible (< 0.02 dB). Only if the BER is saturated above the 10 level does the
power penalty become substantial, and even infinite.

14 Agrawal, G.P. & Shen, T.M., Electron. Lett., 22, 450, 1986.
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Fig. 8.1.2 Power penalty versus the intensity noise parameter 7.

8.1.3

The SNR is also affected by time fluctuations called timing jitter. The SNR is reduced by
such fluctuations but can be maintained by increasing the received optical power. This increase is
the power penalty induced by the timing jitter.

The current fluctuation induced by the timing jitter is defined as:

2
Al = (.2_’5‘_ - 4)(BAt)2 I,

where Ai;is the current induced by the timing jitter Az and B is the bit rate. The probability density

of the current fluctuations is:
1 Ai;
—eXp| —— |
mbALL bl,

4n? 2
b= (_5—— 8)(31,.) ,
and 7;is the RMS value, or standard deviation, of Az. The receiver sensitivity is then:

= _ O'TQ) 1-b/2
Fue®) (R (1-b/2)' -b’Q*/2

p(Aij) =

where

and the power penalty is given by:
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P (b) 1-b/2
=101 _rec =101 .
61 v 0 ng(})m(o)] 0 Oglo((l_blz)z_szzlz)

The following Fig.8.1.3 shows how the power penalty due to jitter varies with the fraction of the

bit period over which the decision time fluctuates - B'rj.‘5 The jitter becomes infinite beyond B, =
0.2. This analysis assumes Gaussian statistics for the receiver current, but jitter-induced current
fluctuations are not Gaussian. More accurate calculations show that a Gaussian approximation
underestimates the power penalty due to jitter.
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Fig. 8.1.3 Power penalty versus the timing jitter parameter BT;.

8.1.4
The average optical power corresponding to a BER of 10° is a measure of receiver

sensitivity. In the following Fig. 8.1.4 the theoretical quantum limit at the two wavelengths of A

= 1.3 pm and A = 1.55 um over bit rates from 100 Mhz to 10 GHz.'® (Real receivers are
expected to be worse by 20 db as compared with the quantum limit.) The Figure shows that as

15 O’Reilly, J.J., DaRocha, J.RF. & Schumacher, K., IEE Proc. 132, Pt. J., 309, 1985;

Schumacher, K. & O’Reilly, J.J., Electron. Lett., 23, 718, 1987;

Shen, T.M., Electron. Lett., 22, 1043, 1986;

Lee, T.P., Burrus, C.A., Dentai, A.G. & Ogawa, Electron. Lett., 16, 155, 1980.

16 Smith, D.R., Hooper, R.C., Smyth, P.P. & Wake, D., Electron Lett., 18, 453, 1982;

Yamada, J., Kawana, A., Miya, T., Nagai, H. & Kimura, T., IEEE J. Quantum Electron. 18, 1537, 1982;
Brain, M.C., Smyth, P.P., Smith, D.R., White, B.R. & Chidghey, P.J., Electron. Lett., 20, 894, 1984;
Snodgrass, M.L. & Klinman, R., J. Lightwave Technol., 2, 968, 1984;

Walker, S.D. & Blank, L.C., Electron. Lett., 20, 808, 1984;

Chen, C.Y., Kasper, B.L., Cox, H.M. & Plourde, J.K., Appl. Phys. Lett., 46, 379, 1985;

Kasper, B.L., Campbell, J.C., Gnauck, A.H., Dentai, A.G. & Talman, J.R., Electron. Lett., 21,982,
1985;

Kasper, B.L., Campbell, J.C., Talman, J.R., Gnauck, A.H., Bowers, J.E. & Holden, W.S., J. Lightwave
Technol., 5, 344, 1987;

Heidemann, R., Scholz, U. & Wedding, B. Electron. Lett., 23, 1030, 1987,

Shikada, M., Fujita, S., Henmi, N., Takano, 1., Mito, I, Taguchi, K. & Minemura, K., J. Lightwave
Technol., 5, 1488, 1987;

Fujita, S., Kitamura, M., Torika, T., Henmi, N., Yamada, H., Suzaki, T., Takano, 1. & Shikada, M.,
Electron Lett., 25, 702, 1989;

Kitamura, K., Ito, K., Matsuda, H., Kaneko, T. & Haneda, M., Electron Lett., 27, 1435, 1991.
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bit rate increases, receiver sensitivity declines. Therefore, in order to obtain a measure of receiver
sensitivity performance, test must be conducted over multiple wavelengths.

R 10™8 10"9 1010
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}ﬁ-ss /ﬁ

£

10°8 10%9 1010
Bit Rate at quantum limit (b/ss)

Fig. 8.1.4 The quantum limit of receiver sensitivity for A = 1.3 pm (top) and A = 1.55 pm (bottom). (The
guantum limit is defined as BER = 10? or the average number of photons contained within the “1” bit = 20.) Real
receivers are expected to be worse by 20 db or more with respect to the quantum limit.

Fig.s 8.1.5 and 8.1.6 illustrate that a demand for a higher BER at constant bit rate must
result in 2 less sensitive receiver. Fig. 8.1.4 compared with Fig.8.1.6 illustrates that a higher bit
rate results also in a decline in receiver sensitivity.
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Bit Error Rate at Bit Rate 1079

Fig. 8.1.5 Receiver sensitivity at the quantum limit as a function of BER at a bit rate of 10° for A = 1.3 um (top)
and A = 1.55 pum (bottom). The better the BER (to the left), the higher the average photon count within the “1”
bit, and the lower the sensitivity.
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Fig. 8.1.6 Receiver sensitivity at the quantum limit as a function of BER at a bit rate of 10'? for A = 1.3 um (top)
and A = 1.55 um (bottom). Sensitivity degradation has decreased by 30 dB in comparison with the lower bit rate

(Fig. 9).

This point is illustrated again in Fig. 8.1.7. This figure shows a decline in the receiver
sensitivity at a constant BER (the quantum limit of 10”%) as a function of increasing bit rate.
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Fig. 8.1.7. Receiver sensitivity at the quantum limit as a function of bit rate at a BER 10 for A = 1.3 um
(top) and A = 1.55 um (bottom). Sensitivity degradation decreases as bit rate increases.

8.1.5

One result of dispersion-induced pulse broadening is that the pulse energy within
the bit slot is reduced when the optical pulse broadens reducing the SNR at the decision
circuit and resulting in a disperion-induced power penalty. This penalty is the increase (in
dB) in the received power compensating for the peak-power and defined by:

0, = —Slog,[1- (4BLD0';,)2] s

where B is the bit rate, D is the dispersion parameter, L is length and o, is the RMS width
of the source spectrum (assumed Gaussian). The following Fig. 8.1.5.1 shows the the

power penalty as a function of BLD 6,.2 The power penalty becomes infinite when BLD G,
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=(.25, indicating that the BL product is the limiting factor. Typically, BLD G, < 0, so the
dispersion parameter is below 2 dB.
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Fig. 8.1.5.1 Dispersion-induced power penalty for a Gaussian pulse as a function of BLDg;. Source
spectrum is also assumed to be Gaussian, with an RMS width of 6;.

8.1.6
Mode-partition noise occurs because of anticorrelation among pairs of longitudinal
modes. For multimode semiconductor lasers, the power peanlty is given by:

8, = —5log, (1-0°r2 ),

where r,,, is the relative noise level of the received power in the presence of mode-partition
noise. Assuming that the average mode power is distributed according to a Gaussian
distribution, the relative noise level is:

_k
rmpn - _ﬁ(
where £ is the mode partition coefficient. Fig. 8.1.6.1 below shows the power penalty at a

BER of 10” (Q = 6) as a function of the normalized dispersion parameter, BLD0,, and
values of the mode partition coefficient, k.'” The power penalty can be reduced to a

negligible level (3, < 0.5 dB) by designing the system so that BLD ¢, <0.1.

'mpn

1-exp[-(nBLD®,)*]).

17 Cheng, W.-H. & Chu, A.-K., Chu, IEEE Photon Technol. Lett., 8, 611, 1996;
Anderson, T.B. & Clarke, B.R., IEEE J. Quantum Electron., 29, 3, 1993;

Valle, A., Colet, P., Pesquera & San Miguel, M., IEE Proc., 140 Pt. J, 237, 1993;
Wu, H. & Chang, H., IEEE J. Quantum Electron., 29, 2154, 1993;

Valle, A., Mirasso, C.R. & Pesquera, L., IEEE J. Quantum Electron., 31, 876, 1995.
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Fig. 8.1.6.1 MPN-induced power penalty versus BLDo, for a multimode semiconductor laser of RMS
spectral width 6, for BER = 10° (Q = 6). Different curves correspond to different values of the mode-
partition coefficient .

8.1.7
The single-mode nature of distributed feedback (DFB) lasers described by the
mode-suppression ratio (MSR), defined as the ratio of the main-power P, to the power P,

of the most dominant side mode. The effect of mode-partition noise (MPN) depends on
MSR.

The MPN-induced power penalty in the presence of receiver noise is obtained by
adding an additional noise term accounting for side-mode fluctuations. For a p-i-n receiver

the BER is:
_1 (9 Ry R} 1, (Q R
BER—zerfc(ﬁ)ﬂaxp( > +4Q2)[1 zeﬁc(ﬁ Q«/i)]’
where
P

is the MSR. The BER exceeds 10° when MSR < 42. The following Fig. 8.1.7.1 shows
the BER as a function of the power penalty at a BER of 10 as a function of MSR."* The
power penalty becomes infinite for MSR values below 42, since the 10° BER cannot be
realized irrespective of the power received. On the other hand, the penalty is negligible (<
0.1 dB) for MSR values in excess of 100 (20 dB).

18 Cartledge, J.C., J. Lightwave Technol., 6, 626, 1988.

Henmi, N., Koizumi, Y., Yamaguchi, M., Shikada, M. & Mito, L, J. Lightwave Technol., 6, 636, 1988;
Fishman, D.A., J. Lightwave Technol., 8, 634, 1990;

Anderson, T.B. & Clarke, BR., IEEE J. Quantum Electron., 29, 3, 1993.
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Fig. 8.1.7.1 Effect of MPN on bit-error rate of DFB laseres for several values of mode-suppresssion ratio
(MSR): 10, 20, 30, 40, 50, 60 (top to bottom). Intersection of the BER = 107 line with the curves
provides MPN-induced power penalty.

8.1.8
Frequency chirping also limits performance. (Optical pulses with a time-dependent

phase shift are called chirped.) The power penalty due to chirping is:

2
8, =—20 loglo{l - (ig-— - 8) BZLDAlctC[l + (gf-)(LDA/'LC -1, )]} ,

where AA, is the spectral shift associated with frequency chirping and z, is the chirp
duration and the receiver is assumed to contain a p-i-n photodiode. The following Fig.

8.1.8.1 shows the power penalty as a function of parameter combination BLDAJ, and for
several values of Br,, a measure of the fraction of the bit period over which chirping
occurs'?. The power penalty can be kept below 1 dB if the system is designed such that

BLDAA, <0.1 and Bt, <0.2.

19 Koch, T.L. & Bowers, J.E., Electron. Lett., 20, 1038, 1984;
Gnauck, A.H. et al, J. Lightwave Technol., 3, 1032, 1985;
Agrawal, G.P. & Potasek, M.J., Opt. Lett., 11, 318, 1986.
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Fig. 8.1.8.1 Chirp-induced power penalty as a function of BLDAA, for several values of the parameter Bt..
A, is the wavelength shift occurring because of frequency chirp and t. is the duration of such a wavelength
shift.

8.1.9

In the case of lightwave systems operating at high bit rates (B > 2 Gb/s), the bit
duration is generally shorter than the total duration 2¢, over which chirping occurs. In that
case, the frequency chirp increases almost linearly over the entire pulse width (or bit slot).
Assuming a Gaussian optical pulse linearly chirped over its entire width, the power penalty
is then:

5, = 510gw[(1 +8CB,BL) + (8[32B2L)2]

where the group velocity dispersion (GVD) coefficient S, is related to the dispersion, D,

by:
di| 1 27c
D=—|—i=——F8,.
dl(vg) 2 P,

Fig.8.1.9.1 below shows the chirp-induced power penalty as a function of 18,|B’L for
several values of the chirp parameter, C. !> The power penalty is negligible (< 0.1 dB) if

IB,\B’L < 0.05. However, the panlty can exceed 5 dB if the pulses transmitted are chirped
at C = -6. To keep the penalty below 0.1 dB, the system should be designed with |8,1B’L <
0.002. Performance is improved for positive values of C, as shown in the Figure, because

the pulse goes through an initial compression phase. When the power penalty becomes
negative at positive values of C, the frequencu chirping combats the effects of dispersion.
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Fig. 8.1.9.1 Chirp-induced power penalty as a function of IB,IB?L for several values of the chirp parameter
C. The Gaussian optical pulse is assumed to be linearly chirped over its entire width.

8.1.10

Optical feedback can increase the noise intensity. The relative intensity noise (RIN)
of a semiconductor laser can be enhanced by external optical feedback. The resulting power
penalty is:

8,y = —1010g10(1 - re;QZ),
where 7, is the effective intensity noise over the receiver bandwidth Af:

2 2 N

re=r +——m———s,
T (MSR)

where 7, is the relative noise level in the absence of reflection feedback, N is the number of
external cavity modes and MSR is the factor by which the external-cavity modes remain
suppressed.

The following Fig. 8.1.10.1 shows the reflection-noise power penalty as a function
of MSR for 7, = 0.01 at several values of N.?° In the absence of feedback (N = 0), the
penalty is negligible. However, refelection can degrade the system performance to the
extent that the system cannot achieve the desired BER despite and indefinite increase in the
power received.

2 Olsson, N.A., Tsang, W.T., Temkin, H., Dutta, NX. & Logan, R.A., J. Lightwave Technol., 3, 215,

1985;
Ho, K.-P., Walker, J.D. & Kahn, J.M., IEEE Photon Technol. Lett., 5, 892, 1993.
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Fig. 8.1.10.1 Feedback-induced power penalty as a function of MSR for several values of N and r; = 0.01.

Reflection feedback into the laser is assumed to generate N side bands of the same amplitude.
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9.0 Probability Density Functions and Moment Generating Functions

There are a number of approaches to the problem determining performance limits on
optical communications systems in the presence of both Poisson and Gaussian noise
influences. Traditionally the model for detection of the inherently stochastic optical signal is
a simple realistic model of a filtered Poisson process in which randomly excited detected
photons excite a bandlimited filter. However, there are further stochastic disturbances,
e.g., additive Gaussian colored noise introduced by post-detection signal processing
circuits. As has been pointed out by O’Reilly and others, the result is a superposition of
marked (compound) and filtered process with a colored Gaussian process. This is the
mixed compound Poisson plus Gaussian regime. In the following, we use moment
generating function methods to calculate those influences on receiver performance. We find
that although the additive influence do influence optical receivers with no gain, influences
on receivers with substantial gain are negligible. In the latter case, although compound
influences are present, there appears no real need to take them into consideration.

In most cases, it is impractical to derive the probability density function. However,
recent developments have shown the way to using generator functions to obtain an accurate
characterization?'. This is because the mapping from characteristic functions to probability
density functions is an isomorphism.

In the case of an ideal receiver (i.e., one with no thermal noise, no dark current,
shot noise variance close to zero, and 100% quantum efficiency), the decision threshold
could be set close to the O-level signal. In such an unlikely situation, Poisson statistics
would be used for shot-noise statistics. If N, is the average number of photons in each 1
bit, the probability of generating m electron-hole pairs is then:

p = exp[—N p]N :

m b

m!

which is a Poisson distribution for a nonhomogeneous process. The performance of an
optical detection system can be described by:

1) = g gh(t—1),

where ¢ is the electronic charge, {z;} are the generation times resulting from the received
optical signal and are Poisson distributed in any interval with a mean determined by the
driving process rate; g; are random gains corresponding to the number of pairs resulting
from primary carrier generation at times #; h(z) is the filter impulse response. As it is not
generally possible to derive a tractable closed form expression for the probability
distribution for /, a generation function description was sought and found.

This was achieved by segmenting the time axis into elementary intervals and writing
the contribution to the output current at time instant ¢ as due to carriers generated with an
interval Arcentered on z,:

N
I,®=q) ghlt-1),

2 Cattermole. K.W. & O’Reilly, J.J. (Ed.s) Mathematical Topics in Telecommunications. Volume 2.
Problems of Randomness in Communication Engineering, Wiley. New York, 1984.
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where N is the number of detection events with At centered on ¢, and is Poisson distribution
with mean:

E{N}=A(@)At,
and

My=nBl 2
hv q

is the instantaneous mean creation rate, P, () is the incident optical power, 7 is the quantum
efficiency and /, is the photocurrent.
A conditional moment generating function for 1, is*:

{M, ()N =N}=E{exp|sl, |} = E{exp[sqﬁ': g.h(t - tn)]}

Ny
= H E{exp[sqgh(t - t,v)]}
i=1
where g represents the gain random variable with moment generating function:
M, (s) = E{exp[sg]}.

Therefore the conditional moment generating function for /, can be written:

(M, 91N = N} =[M, (sgha -]

By averaging over N the conditioning can be removed with respect to the number of
detection events in the time interval Az. As N is Poisson distributed, the unconditional
moment generating function is:

oo

M, (s)= exp[—l(tn)At]z.l()L(tn))N M (sqh(t-1,)) " = exp|A(z,)Ar M, (sqh(z—1,))-1
i!

i=1

Because with respect to different time intervals:
« the number of detection events are independent, and
« the avalanche gain associated with a given event is independent of the gain associated with
other events,
the moment generating function for the random variable I(t) corresponding to the sum of
the contributions from the various intervals is given by the product of the elementary
contributory moment generating functions, i.e.:

2 O’Reilly, J.J., Generating functions, bounds and approximations in optical communications. pp. 119-
133, in Cattermole. K.W. & O’Reilly, J.J. (Ed.s) Mathematical Topics in Telecommunications. Volume 2.
Problems of Randomness in Communication Engineering, Wiley. New York, 1984.
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M,(s) = [ M, ) = [Texp| At )Ae{ M, (sqht ~1,)) - 1] = exp[z A, )M, (sqh(t-1,)) - 1}]
In the Ar—0 limit,
M,(s)= exp|: I/’L(r)[Mg (sqh(t —1))— I]dr}

which, although not analytic, can substitute for the probability density function. If a gain
moment generating function is chosen of the form:

M (s) = exp[s],

there is a further simplification of the moment generating function of the Poisson process
to:

M,(s) = exp[ Tl(t){exp[sqh(t -7)]- l}df}

Furthermore, Gaussian noise is additive and independent of the signal and gain
processes. As addition of independent random variables gives rise to a multiplication of
their generating functions, the output process:

I,O=1)+1,(r)
has the moment generating function:

M I () =M, (s )M I (s)

where
2
o"l
M, = expli—-é—sz]

is the moment generating function for a zero-mean Gaussian process with variance o’

Chernoff Bound
The moment generating function of the random variable X is defined as:

M(s) = E[exp(sX)] = ]:exp(sx)dF (%),

for all real s for which the integral is finite, where F(x) is the distribution function of X. Let
P[ ] denote the probability of the event in the brackets. For all non-negative s,
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PIX2 0]= IdF x) < Texp(sx)dF (x).
0 0

From a comparison of the previous two equations, it can be concluded that:
P[X20]<M(s), 0<s<y

where s, is the upper limit of the interval in which M(s) is defined. In order to make the
bound as tight as possible, a value of s is chosen that minimizes M(s). Therefore?®,

P[X > 0] < min,,, M(s).

The right hand side of this inequality is the Chernoff bound.
If it can be assumed that:

E(X)<0, P(X>0)>0,
then

P[X 0] < %mjnom, M(s).

Modified Chernoff Bound

Prabhu® derived a modified Chernoff bound (MCB) applicable to binary pulse
amplitude modulation systems corrupted by additive interference and independent zero-
mean Gaussian noise. This MCB requires the evaluation of the moment generating function
for the interference, which may be independent zero mean Gaussian noise. Da Rocha &
O’Reilly extended the MCB model to direct-detection optical communications?®.

Essentially, the extension to optical communications is achieved by modeling the
signal as a signal conditioned marked and filtered Poisson process with mean value
corresponding to the message waveform, by employing a conditional generating function
description and by using principles of analytic continuation and contour integration. The
extended MCB accommodates the inherent stochastic character of the signal, together with
Gaussian noise and both optical and electrical intersymbol interference. The tightness of the
MCB for optical communication is assessed by comparing it with the standard Chemoff
bound (CB).

For non-avalanche gain receivers the MCB is found to be considerably tighter than
the CB for all cases of practical interest. For an avalanche photodiode receiver, the MCB is
tighter than the CB for modest gains, but the performance of the MCB deteriorates as the
gain increases.

The analysis commences from the point of view of the decision stage of the error
probability:

2 Torrieri, DJ., Principles of Secure Communication Systems, 2nd Edition, Artech, 1992, pp. 66-69;
Billingsley, P., Probability and Measure, 2nd Edition, New York, 1986;

Jacobs, M., Probabiluty of error bounds for binary transmission on slowly fading Rician channel, IJEEE
Trans. Inform. Theory, IT-12, 431, 1966.

% Prabhu, V K., Modified Chernoff bound for PAM systems with noise and interference. IEEE Trans., IT-
28, 95-100, 1982.

» Da Rocha, J.R.F. & O’Reilly, J.J., Modified Chernoff bound for binary optical communication.
Electronics Letters, 18, 708-710, 1982.
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BER = %(P(O/ 1)+ P(1/0)),

where P(0/1) and P(1/0) are conditional error probabilities. For a decision threshold 7,
these conditional probabilities are:

PO/V)= [P, /0l
]D

L=
=—/|dl —-iadl |C, (w)dw
24 JoliaC, @

—co

and

PQ/0)= [P, U/0)d!

Ip

1 Ip o
= [al [exp[-ial]C, (@)dw

where P, is the conditional probability density function and C; .the conditional
characteristic function for the signal and noise process at the input to the decision device
when i’ is being received.

Next, the characteristic function is extended into the complex plane by way of
analytic continuation. This allows the conditional probabilities to be obtained by contour
integration:

PO/10r1/0)= jlexp(—ilz)c,, (2)dz,
2mi ¢ 2 :

where i =0,1, and C,, C, are contours chosen to be parallel to the real axis in the lower and
upper halfplanes, respectively.

The following substitutions are made for z:
z=u—-isy; $,>0, i=0
z=u+is; >0, i=1

and the conditional probabilities are bounded giving:

PO/ < exp(—Ips, + 0753/ 2)M,, (s,)

1
J@2r)s,o
1
J2m)s, o exp(

P(1/0) < Ips, +6°s} [2)M, (=s,)
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where M, , M, represent conditional moment-generating functions relating to the signal

process and o is the additive Gaussian noise variance.
By substitution an upper bound for the BER is obtained as:

BER = —-1——-{M,o (s)exp(—Ips + 0757 /2) + M, (=s)exp(I s+ 675% / 2)} (A)

2/(27)so

where
1 '}
M, = 2—Nexp[Hlo (s, P)][T{1+exp[H.ts.P)]},
i=n

1 L)
b, - el oIt l 6P
i=n
= |n| +n, is the number of interferers,

H(s,P)=K IhA(Mg(sP)— 1)dr,
H(s,P)=K Ih,.(Mg (sP)-1)dr,

H, (s,P)= I/IO (M,(sP)-1)dx,

h, = h(t)+ A, /K,
h, =~ h(t —iT),
P=P(t-1),

with A(t) the received optical pulse shape, 4, the photodiode dark current intensity, K the
optoelectronic conversion factor, M (s) the moment-generating function for the photodiode
avalanche gain and P(1) the 1mpulse response of the receiver filter following amplification
and equalization for front-end bandlimiting.

Eq. (A) is applied utilizing an optimum value for s which minimizes the BER, i. e,
provides an upper bound to the probability of error. The results are shown in Fig.s 9.1%8
The modified Chernoff bound (MCB) provides a tighter bound than the Chernoff bound.
However, comparing Fig. 9.1A and Fig. 9.1B, it may be seen that the difference between
the two bound estimations is much less significant with receiver gain. In fact, Fig. 9.1C
shows that the difference is almost negligible for a gain of 40.

% Da Rocha, J.RF. & O’Reilly, 1.J., Modified Chernoff bound for binary optical communication.
Electronics Letters, 18, 708-710, 1982;

O'Reilly, J.J., Generating functions, bounds and approximations in optical communications. pp. 119-133,
in Cattermole. K.W. & O’Reilly, 1.J. (Ed.s) Mathematical Topics in Telecommunications. Volume 2.
Problems of Randomness in Communication Engineering, Wiley. New York, 1984.
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Fig.s 9.2-9.7 compare receiver characteristics using a BER based on Gaussian
statistics and a BER based on mixed Poisson-Gaussian statistics. It can readily be seen that
for most purposes, the difference is negligible.
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Fig. 9.6. Effect of MPN on bit-error rate of DFB laseres for several values of mode-suppresssion ratio (MSR): 10, 20, 30, 40, 50, 60 (top to bottom).
Intersection of the BER = 10? line with the curves provides MPN-induced power penalty. Left: Gaussian statistics; Right: Mixed Gaussian-Poisson.

137




10 15 20 30 50 70 100 100

. .
1}
F .
g

=]

5 N\
m/!i. #ff

e

N

Wet-urpd HpToM
(] =]
[
[~
]
b
o
“Eei-popY Rprow
[ ] ()]

N
~

T
I]l..l..]..r..

10 15 20 30 S0 70 100 10 15 20 30 50 70 100
Mode Suppression Ratio Mode Suppression Ratio

Fig. 9.7. Feedback-induced power penalty as a function of MSR for several values of N and r; = 0.01. Reflection feedback into the laser is assumed to generate N
side bands of the same amplitude. Left: Gaussian statistics; Right: Mixed Gaussian-Poisson.

138




10. Device Capability: Chirped Gaussian Pulses & Solitons.

We examine here the impact on data rate and bit error rate of chirped Gaussian
pulses, dispersion, modulation formats, preamplification and use of soliton pulses. The
interaction between dispersion and pulse chirping is examined; the optimal operation of
lightwave systems is modeled near the zero-dispersion wavelength of a fiber and by using
optical sources with a relatively narrow spectral width; the effect on bit error rate of various
modulation formats is modeled; and the effect on receiver sensitivity of filter bandwidth at
various levels of the noise figure is modeled showing that amplifiers with small noise
figure must be used and performance can also be improved by reducing the optical filter
bandwidth. As bit rate can also be increased by the use of very short pulses, solitons are
modeled with respect to pulse evolution according to the order of the soliton. Other
evolutions modeled are: to a “‘sech” pulse from a Gaussian input and from a *“sech” input of
varying order; dark solitons; soliton pairs; and chirped solitons.

Chirped Gaussian Pulses:

If each frequency component of the optical field propagates in a single mode fiber
as:

E(r,w) = XF(x,y)B(0,w)exp[ifz),

where x is the polarization unit vector, F(x,y) is the field distribution of the fundamental
fiber mode, B(0,w) is the initial amplitude and J is the propagation constant; and if the
frequency dependence of Bis:
o 1 2, 1 3
B(w) = n(w)? =~ By + ﬁ1(Aw)+§'ﬁ2(Aw) +gﬁ3(Aw) >
where Aw =0-0,, B, = (d"‘,B/ dw”‘)w=w . B =1/v,, v, is the group velocity, j3, is
related to the dispersion parameter”’, and f3, is related to the dispersion slope?®, then the

basic propagation equation is®:

i, J°A

A L 0A 1, d°A
g tahar TP =0 10D

—+

oz
where A(z,t) is a slowly varying amplitude. By making the transformation to a reference
frame moving with the pulse by introducing the new coordinates,

r=t-Bz, <=z,

%7 The dispersion parameter is D = &%(;13—] = ——2:,{-72-6— B,.
2 3
 The dispersion slope is S = -d£ = (%I;C—) B, + (%)ﬂz and B, = d—BZ = d’p .

dA do do’
» Agrawal, G.P., Fiber-Optic Communication Systems, Second Edition, Wiley, 1997.
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If the initial pulse amplitude is:

A1) = A exp|:— 1+2ic (Ti) }
0

where the parameter T, represents the half-width at the 1/e intensity point and the parameter
C governs the linear frequency chirp imposed on the pulse, then on propagation, the pulse

width changes as:
2 2/2
_TL =11+ CB,z + B,z
- 2 2 ’
T, T Ty

where T, is the half-width of the pulse at the /e intensity point of the introduced pulse. The
following Fig. 10.1 shows the variation of the broadening factor T,/T, with propagation
distance for a chirped Gaussian input pulse, where the dispersion length is given by:

B >0

DISTANCE. Z/L,

Fig. 10.1. Variation of the broadening factor with propagated distance for a chirped Gaussian input pulse.
The Dashed curve corresponds to the case of an unchirped Gaussian pulse. After Ref>.

A chirped pulse may broaden or compress depending on whether 8, and C have the same
or opposite signs.

Effect of Dispersion:

Limitations on the bit rate can be assessed as follows. The condition:
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BL|Dlo, <1/4, (A)

where B is the bit rate, L is length, D is the dispersion parameter and o, is the RMS source
spectral width in wavelength units, holds when the spectral width is wide to average. The
condition:

B\|B,|L <1/4 (B)

is valid in the case of optical sources with small spectral width. In the case of the limit of
zero dispersion, the condition is:

B(B|L) " < 0.324. ©)

Based on Eq.s (A), (B) and (C), the following Fig. 10.2. shows the limiting rate of single
mode fibers as a function of the fiber length. Eq. (A) was used for the D = 16, 0, = 1 nm

and 5 nm cases; Eq. (B) was used for the D = 16, 6, = 0 nm; and (C) Eq. (C) was used for
the D =0 case.

10% 10"
10* D=0 {10°
%, =0nm D = 16 ps/(km-nm)
%loﬂ ——_h—‘—__\———b—__———-_——_ 10“
£ 1 mm
Em" 4107
5 um

10% 10'
Fiber Length (km)
Fig. 10.2. Limiting bit rate of single mode fibers as a function of the fiber length for 6; = 0, 1, and 5 nm.
The case 6, = 0 corresponds to the case of an optical source whose spectral width is much smaller than the
bit rate. After Ref”.

Fig. 10.2 shows that lightwave systems operate optimally near the zero-dispersion
wavelength of a fiber and by using optical sources with a relatively narrow spectral width.

Modulation Formats:

The bit-error rate also varies across modulation formats. The bit error rate for
various modulation formats is shown in Table 10.1 and Fig. 10.3.
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Table 10.1. Receiver BERs

Receiver BER§

(1) Synchronous PSK homodyne receiver _1
BER = Eerfc(, [2nN,)

(2) Synchronous PSK heterodyne receiver

4

BER = éerfc( v, |

(3) Asynchronous DPSK receiver BER = _;_ exp[—-an]

(4) Synchronous FSK heterodyne receiver 1 ( N
BER = —2—erfc

| Vel
ﬁ
R~

=

k]

(5) Asynchronous FSK receiver

1
BER = —exp| -
) 1%

P

4

2
(6) Synchronous ASK heterodyne receiver ( N
1 ny,
BER = —erfc
2 . 4
(7) Asynchronous ASK receiver B NN ]

1
BER = ~exp| -
27

§ 7 is the quantum efficiency; N, is ¢ number of photons in the “1” bit.
ASK - amplitude-shift keying
PSK - phase-shift keying
DPSK - differential phase-shift keying
FSK - frequency-shift keying

1 2 s 1o S0 100
Number of photons/bit

Fig. 10.3 Bit-error curves for various modulation formats. The solid and the dashed lines correspond to the
cases of synchronous and asynchronous demodulation, respectively. After Ref”. Referring to Table 1, these
curves were generated by using Eq.s (1)-(7) consecutively. ‘
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Fig. 10.3 shows that in all cases the BER is larger for the asynchronous case for the same

value of 7N, but the difference is so small that the receiver sensitivity at a BER of 107 is
degraded by only about 0.5 dB.

Preamplification:

Receiver sensitivity can be improved 10-20 dB by using an EDFA as a
preamplifier*’. However, the use of optical preamplifiers results in the contamination of the
amplified signal by spontaneous emission. Because of the incoherent nature of the
spontaneous emission, the amplified signal is noisier than the input signal. Using an optical
preamplifier, the average number of photons/bit can be described by:

— 1 24v,,\'?
N ==F|0°+0 —%| |
=1 2]

I, :I" , F, is a noise figure and Av,, is the optical filter bandwidth. The
0'1 0-0

following Fig. 10.4 shows the effect on receiver sensitivity of filter bandwidth at various

levels of the noise figure at Q = 6. The figure shows that amplifiers with small noise figure

must be used. The performance can also be improved by reducing Av,,,. Typically, N , 18

greater than 1000 for p-i-n receivers without optical amplifiers. However, Av,, can be less

than 100 when optical amplifiers are used to preamplify the signal, despite spontaneous
emission degradation.

where Q =

10 10 10 10
%son
1
v
£600 1600
bR
5 -
n
Fa00 {a00
X
v
1200 4200
[
E J

10" 10* 102 10%

Filter Bandwidth, 4vsB

Fig. 10.4. Receiver sensitivity versus optical-filter bandwidth for several values of the noise figure F, when
an optical amplifier is used for preamplification of the received signal.

3 Smyth. P.P., Wyatt, R., Fidler, A., Eradley, P., Sayles, A. & Craig-Ryan, S., Electron. Lett., 26,
1604, 1990;

Steele, R.C> & Walker, G.R., IEEE Photon. Technol. Lett., 2, 753, 1990;

Blair, T.L. & Nakano, H., Electron. Lett., 27, 835, 1991,

Saito, T., Sunohara, Y., Fukagai, K., Ishikawa, S., Henmi, N., Fujita, S. & Aoki, Y., IEEE Photon.
Technol. Lett., 3, 551, 1991;

Gnauck, A.H. & Giles, C.R., IEEE Photon Technol. Lett., 4, 80, 1992;

Réhl, F.F. & Ayre, RW., IEEE Photon. Technol. Lett., 5, 358, 1993.
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Use of Soliton Pulses:

Bit rate can also be increased by the use of very short pulses known as solitons,
which are the resultant pulses when the input signal is matched to fiber characteristics so
that a balance is achieved between group-velocity dispersion (GDV) and self-phase
modulation (SPM). In fact, Fig. 10.1, above, shows that group-velocity dispersion
broadens optical pulses during their propagation inside the fiber except when the pulse is
initially chirped correctly. Self-phase modulation results from the intensity dependence of
the refractive index and imposes a chirp on the optical pulse. In order to obtain a soliton,
GVD and SPM must match so that the SPM-induced chirp is canceled by the GVD-
broadening of the pulse.

The wave equation in a dispersive nonlinear medium is required to describe soliton
pulses. By taking Eq. (10.1), above, the effects of SPM can be included by adding a
nonlinear term on the right side of the equation, which gives:

0A

dA i_0d*A 1, 3A
§+ﬂ15+—ﬁ2

—inlaa &
P25 6ﬁ3 P% =iy|AI"A 2A, (10.2)

where o is a loss term and 7is the nonlinearity parameter defined:

= 2m
M,

14

n, is the nonlinear refractive index coefficient and A is the effective core area. f, and y
govern the effects of GVD and SPM, respectively.

Eq.10.1. is written in normalized form using:

_I-Bz e=2, U= A
T, L, N3

where T, is a measure of pulse width, P, is the peak power of the pulse and the dispersion
length is:

T

T2
o= 57

This normalized form is the nonlinear Schréodinger equation (NSE):

.oU 10U
za—g - sgn(Bz)E—a—T—z+ NUPU =0 (10.3) NSE

where sgn(f)) = +1 or -1, depending on whether S, is positive (normal GVD) or negative
(anomalous GVD). The parameter N, represents a dimensionless combination of the pulse
and fiber parameters:
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Pulse like soliton solutions are found for the case of anomalous dispersion (8, < 0) and
dark soliton solutions are found for the case of normal dispersion (83, > 0).

If the definition # = NU is introduced as a renormalized amplitude, the canonical
form of the NSE is obtained (with , < 0):

If an input pulse with an initial amplitude:
u(0,7) = N sech(t)

is introduced into the fiber, its shape remains unchanged when N = 1, but follows a
periodic pattern when N > 1, but with its shape recovered at intervals.

For N = 1 (the fundamental soliton), the soliton is remarkably stable, but at other
values of N (higher-order solitons) chirping occurs (Fig. 10.5). On the other hand, if N =
1, the pulse evolves toward a sech pulse even if the input is Gaussian (Fig. 10.6). This
evolution toward the “sech” pulse occurs for values of N in the range 0.5 - 1.5 (Fig. 10.7).

In the case of normal dispersion, the intensity profile of the resulting solution is a

dip in a uniform background which remains unchanged during propagation inside the fiber.
The general solution for a dark soliton is:

uy(€,7) = (Mtanhg —ik)expliuy&],
where
c=n(t-KE), N=u,cosd, K=uysing ,

for which u, is the amplitude of the background, ¢ is an internal phase angle, and 17 and ¥
are the amplitude and velocity of the dark soliton. The phase of a soliton changes across its
width, as is shown in Fig. 10.8.

As each soliton pulse occupies only a fraction of a bit slot, the presence of pulses in
neighboring bits can perturb a soliton because the combined optical field is not a solution of
NSE. Therefore soliton interaction results. In order to model this effects, the NSE can be
solved with a soliton pair as the input:

u(0,7) = sech(t — q,) + Tsech[r(t + q,)lexp[if]

where r is the relative amplitude of the two solitons, 0 is the relative phase and 2g, is the
initial (normalized) separation. Fig. 10.9. shows the evolution of a soliton pair with
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separation g, = 3.5 and for several values of the parameters r and 6. Soliton interaction
depends on the relative phase 8 and the amplitude ratio r.

Fig. 10 shows the evolution of a chirped pulse soliton with an input amplitude:
u(0,7) = N sech(t)exp[-iCt? /2],
where C is the chirp paiameter. The pulse is initially compressed mainly due to the positive

chirp; the pulse then broadens but is then compressed a second time with tails gradually
separating from the main peak. The main peak evolves into a soliton over a propagation

distance & > 15. Only 83% of the energy is converted into a soliton for the case C = 0.5
shown in Fig. 10.10. For C = 0.8, the fraction reduces to 62%.
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Fig. 10.5. Evolution of the first, second, third and fourth order solitons over one soliton period with #(0,7) = N sec h(t) as input.
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Fig. 10.6. Evolution of a Gaussian pulse with N = 1 over the range £ = 0-10. Although the input is

u(0,7) = exp[~7> /2] there is an adjustment of the shape, width and peak power as the pulse evolves to
the fundamental soliton,

Fig. 10.7. Pulse evolution for a “sech” pulse with N = 1.2 over the range & = 0 - 10. Although the input is
u(0,7) =1.2 sech(t), i.e., N = 1.2, the pulse evolves toward the fundamental soliton, N = 1, by
adjusting its width and peak power.
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Fig. 10.8. (a) Intensity and (b) phase profiles of dark solitons for several values of the internal phase ¢.
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Fig. 10.9. Evolution of a soliton pair over a variety of dispersion lengths showing the effects of soliton
interaction for different choices of amplitude ratio r and relative phase 8 and initial spacing g, Input
amplitude: #(0,7) = sech(T —q,) + Tsech[r(z +q,)lexp[if].
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Fig. 10.10. Evolution of a chirped optical pulse for N=1,C=0.5; A. §£=0-12; B. £ = 12 - 18, with
input 4(0,7) = N sech(t)exp[-iCt?/2].
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11. Underlying Group Structure of Orthogonal Codes.

In this section we address the underlying group structure of the orthogonal codes:
the hyperbolic congruence, the quadratic congruence, and the Welch-Costas codes.
Achievement of the highest data rate optical communications - given a defined
subcomponent performance - is dependent on achieving orthogonal codes with both
excellent auto- and cross-correlation properties. Excellent performance in the case of one
attribute, e.g., auto-correlation, is sometimes associated with poor performance in the other
attribute, e.g., cross-correlation. To determine the group structure determining performance
on both attributes, we initiated a study of the relative incidence of sequence occurrence
across codes based on different prime numbers, and for sequences of 2,...., 6. We report
the Mathematica algorithms in an Appendix and demonstrate the differences in group
structure between the three types of orthogonal codes. The superiority of the hyperbolic
and quadratic congruence codes in both auto- and cross-correlation properties, as compared
with the superiority of the Welch-Costas codes in auto-correlation properties, but poor
performance in cross-correlation properties, is mirrored in the lack of symmetry shown by
the Welch-Costas codes in the analysis offered here.

Introduction:

Orthogonal codes have one occurrence per frame and the sequence of occurrences
across a superframe can be represented by a series of numbers which indicate the slot
position for an occurrence in each frame of the superframe. Each code family is based on a
prime number, p, and there are p - 1 codes generated per prime number. Therefore, there
are 2 codes generated for p = 3, 4 codes for p =5, 6 codes for p = 7 and 10 codes for p =
11, etc.

We constructed algorithms that permitted the generation of the codes in terms of the
slot position of the code’s occurrence in the frame for the three families of orthogonal
codes: hyperbolic congruence, quadratic congruence and Welch-Costas codes. This
permitted a visualization of each code’s underlying group structure and the analyses to
follow are based on this form of representation.

The following are the hyperbolic congruence codes for codes #1 - #10 forp = 1, 3,
5,7 and 11:

( {1} \
{1, 2}
{1, 3, 2, 4}
{1, 4, 5, 2, 3, 6}
\{1, 6, 4,3, 9, 2,8, 7,5, 10}

( {2, 1} )
{2, 1, 4, 3}

{2, 1, 3, 4, 6, S}

\{2, 1, 8,6, 7, 4, 5, 3, 10, 9}

( (3, 4, 1, 2} \
{3,5,1, 6, 2, 4}
\ {3, 7, 1, 9, 5, 6, 2, 10, 4, 8} J
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{4, 2, 3, 1}

. {4, 2, 6, 1, 5, 3}
{4, 2, 5,1, 3, 8, 10, 6, 9, 1}

( {5, 6, 4, 3, 1, 2} )
{5, 8, 9, 4, 1, 10, 7, 2, 3, 6}

( {6, 3, 2, 5, 4, 1} )
{6, 3, 2, 7, 10, 1, 4, 9, 8, 5}

(7 9 6 10 8 3 1 5 2 4)
(8 4 10 2 6 5 9 1 7 3)
(9 10 3 5 4 7 6 8 1 2)

(10 5 7 8 2 9 3 4 6 1)

Using the algorithm reported in the Appendix, the following Fig. 11.1 shows the
incidence of sequence occurrence across codes for the hyperbolic congruence codes, p = 1,
2,3,5,7 and 11. This Fig. 11.1 should be compared with Fig.s 11.2 and 11.3 to follow.
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Hyperbolic Congruence Codes

Fig. 11.1. The incidence of sequence recurrence across codes basedonp = 1, 2, 3, 5, 7 and 11, and for the
codes #1 - #6 and for sequences of length 2 through 7. In the case of the Hyperbolic Congruence Codes
there is some recurrence at sequences of length 2 and one instance of a sequence of length 3.

157




The following are the quadratic congruence codes for codes #1 - #10 for p =

1,3,5,7and 11:

( {1}
{1, 2}
{1l 3’ 2’ 4}
{1, 4, 5, 2, 3, 6}
\ {1, 6, 4, 3, 9, 2, 8, 7, 5, 10}
( {2, 1}
{2, 1, 4, 3}
{2, 1, 3, 4, 6, 5}
\ {2, 1, 8,6, 7, 4, 5, 3, 10, 9}
( {3, 4, 1, 2}
{3, 5,1, 6, 2, 4}
\ {3, 7, 1, 9, 5, 6, 2, 10, 4, 8}
( {4, 2, 3, 1}
{4, 2, 6, 1, 5, 3}
\ {4, 2, 5,1, 3, 8, 10, 6, 9, 7}
( {5, 6, 4, 3, 1, 2}
{5, 8, 9, 4, 1, 10, 7, 2, 3, 6}

( {61 3[ 2[
{6, 3, 2, 7, 10,

(7 9 6 10 8
(8 4 10 2 6
(9 10 3 5 4

(10 5 7 8 2

S, 4, 1}
1, 4, 9, 8, 5}

31 5 2 4)
5 9 1 7 3)
7 6 8 1 2)

9 3 4 6 1)
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Using the algorithm reported in the Appendix, the following Fig. 11.2 shows the
incidence of sequence occurrence across codes for the quadratic congruence codes, p = 1,
2, 3,5, 7 and 11. This Fig. 11.2 should be compared with Fig. 11.1, above, and Fig.

11.3 to follow.

puadratic congruence Codes

SESEsK
RS
R

#6

Fig. 11.2. The incidence of sequence recurrence across codes based onp = 1, 2, 3, 5, 7 and 11, and for the
codes #1 - #6 and for sequences of length 2 through 7. In the case of the Quadratic Congruence Codes there
is maximum recurrence at sequences of length 2 for code #1. The incidence of recurrence diminishes across
codes #1 - #6. Recurrences at other sequence lengths is also maximum for code #1 and there is diminishing

recurrence across codes #1 - #6.
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11:

The following are the Welch-Costas codes for codes #1 - #10forp =1, 3, 5,7 and

(

(

(

{2, 1}
{2, 4, 3, 1}
{2, 4, 1, 2, 4, 1}

\ {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} J

{1, 2}
{4, 3, 1, 2}
{4, 1, 2, 4, 1, 2}

\ {4, 8, 5,10, 9, 7, 3, 6, 1, 2} J

{1, 2, 4, 3}
{6, 5, 3, 6, 5, 3}

\ {6, 1, 2, 4, 8, 5, 10, 9, 7, 3}

{3, 1, 2, 4}
{1, 2, 4, 1, 2, 4}

. (8, 5, 10, 9, 7, 3, 6, 1, 2, 4} J

{3, 6,5, 3,6, 5}

({10, 9, 7, 3, 6, 1, 2, 4, 8, 5}

({1, 2, 4, 8, 5, 10, 9, 7, 3, 5})

{SI 3’ 6’ 5[ 3’ 6}

(3 6 1 2 4 8 5 10 9 7)
(5 10 9 7 3 6 1 2 4 8)
(7 3 6 1 2 4 8 5 10 9)

(9 7 3 6 1 2 4 8 5 10)
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Using the algorithm reported in the Appendix, the following Fig. 11.3 shows the
incidence of sequence occurrence across codes for the Welch-Costas codes,p = 1, 2, 3, §,
7 and 11. This Fig. 11.3 should be compared with Fig.s 11.1, and 11.2 above.

HWelch-Costas Codes

N

AN
IR
RN

77

&
2 2N

#6

Fig. 11.3. The incidence of sequence recurrence across codes basedonp=1,2, 3, 5,7 and 11, and for the
codes #1 - #6 and for sequences of length 2 through 7. In the case of the Welch Costas Codes there is
maximum recurrence at sequences of length 2 across all codes #1 - #6. There is also recurrence at sequence
of length 3, and again across all codes #1 - #6.

Fig. s 11.1-11.3, together with Fig.s 11.4-11.9, indicate that the superiority of the
hyperbolic and quadratic congruence codes in both auto- and cross-correlation properties,
as compared with the superiority of the Welch-Costas codes in auto-correlation properties,
but poor performance in cross-correlation properties, is mirrored in the lack of symmetry
shown by the Welch-Costas codes in the analysis offered by Fig.s 11.8 and 11.9. This
approach will be pursued in the future.
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Hyperbolic Congruence Codes, p = 1-19, #1 Hyperbolic Congruence Codes, p = 1-19, #2

VA4 2 £z Vi
Z A4 L L z {

Hyperbolic Congruence Codes, p = 1-19, #3 Hyperbolic congruence Codes, p = 1-19, #%

Hyperbolic Congruence Codes, p = 1-19, #5

L [/ L [ F f B O, D ..
L 7L 2 27 2L I 1 AN N N N N SO ST

Fig. 11.4. Hyperbolic Congruence Codes, p =1 - 19, Codes #1 - #5.
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Hyperbolic Congruence Codes, p=1-19, #3

Hyperbolic congruence Codes, p=1-19, #1 Hyperbolic congruence Codes, p=1-19, #2 7

2.5 -1 7.5 10 12.5 15 17.5 2.5 s 7.5 10 12.5 15 17.5 2.5 S 7.5 10 12.5 15 17.5
Hyperbolic Cougruence Codes, p=1-19. #4 Hyperbolic Congruence Codes, pal-19, #5

- 2

2.5 -] 7.5 10 12.5 15 17.5 2.5 S 7.5 1 12.5 15 17.5

0
Fig. 11.5. Hyperbolic Congruence Codes, p = 1- 19, Codes #1 - #5.
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puadratic Congruence Codes, p = 1-13, #1

puadratic Congruence Codes, p = 1-19, #2
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puadratic Congruence Codes, p = 1-19, #3

VA VAN 4 2 2
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z

Quadratic Congruence Codes, p = 1-19, ¥4

/|

1

NN N SN N N

Quadratic Congruence Codes, p = 1-19, #5

N

N\
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Fig. 11.6. Quadratic Congruence Codes, p =1 - 19, Codes #1 - #5.
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Welch-costas Codes, p = 1-19, #1

Welch-Costas Codes, p = 1-19, #2
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Welch-Costas Codes, p = 1-19, #3
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Fig. 11 8. Welch-Costas Codes, p = 1 - 19, Codes #1 - #5.
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Appendix 11.1

(1) Sequence determination for hyperbolic congruence codes, p= 1, 2, 3, 5, 7 and
11, for sequences 2,....., 6.

p=11;

9=1;
oneStepA[s_,q_]:=Table[Extract[Position[

Transpose[Table{
H[(Mod[q-n*r,s])==0,1,0],
{n,1,s-1},{r,1,s-1}1],11,
{x,2}],{x,1,s-1}];
Z77[x_]: —DeleteCases[Table[If[aneQ[l] && 1>q,oneStepA[1,q]] {1,1,x}],
Null];
AR1=Z77[p};
Howmany=Length[AR1];

z={};
Do[AppendTo[z,AR1[[i]]],{i,1,Howmany}];
z=Flatten[z];
Howlong=Length[z];
For[n=2,n<(Howlong-1),n++,
Do[excerpt=Take[z,{x+1,x+n}];
remainder=Drop[z,{x+1,x+n}];
IffMatchQ[remainder,{___,Sequence@@
excerpt, ,Pri i
{x,0,Howlong-n}]]

(2) Sequence determination for quadratic congruence codes,p= 1,2,3,5,7 and 11,
for sequences 2,....., 6.

p=1L

9=1;
oneStepA[s_,q_J:=Table[Extract[Position|

Transpose[Table[
If[(Mod[n-(q*0.5*(r*(r+1))),s])==0,1,0],
{n,0,s-1},{r,0,s-1}1],1],
{x,2}],{x,1,s}];
Z277[x_}:=DeleteCases[ Table[If[PrimeQ[i] && i>q,oneStepAli,qll,{i,1,x}],
Null];
AR1=ZZ7Z][p];
Howmany—Length[ARl]

Do[AppendTo[z, ARl[[l]]] {i,1,Howmany}];
z=Flatten[z];
Howlong=Length[z];
For[n=2,n<(Howlong-1),n++,
Dol[excerpt=Take[z,{x+1,x+n}];
remainder=Drop[z,{x+1,x+n}];
,Sequence@@

excerpt,
{x,0,Howlong-n}]]
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(3) Sequence determination for Welch-Costas codes, p= 1, 2, 3, 5, 7 and 11, for
sequences 2,....., 6.

p=11;
g=1;
oneStepA[s_,q_J:=Table[Extract[Position[
Transpose[ Table[
If[(Mod[n-q*(2%r),s])==0,1,0],
{Il,l,S-l },{r,l,s-l }]]’l]a
{x,2}1,{x,1,s-1}];
Z7ZZ[x_]:=DeleteCases[Table[If[PrimeQ[i] && i>q,oneStepA[i,qil,{i,3,x}],
Null];
AR1=Z77|p];
Howmany=Length[AR1];

z={};
Do[AppendTo[z,AR1[[i]]],{i,1,Howmany}];
z=Flatten([z];
Howlong=Length[z];
For[n=2,n<(Howlong-1),n++,
Dolexcerpt=Take[z,{x+1,x+n}];
remainder=Drop|z, {x+1,x+n}];

IffMatchQ[remainder,{____,Sequence@@

excerpt,____}],Print[excerpt],Continue[] ],
{x,0,Howlong-n}]]
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12.0 Bit Parallel Wavelength Division (BPWD).

12.1 Pulse Alignment.

In this section we address the possibility of increasing data rate in optical fiber
communications by using the method of bit parallel wavelength division (BPWD) which
utilizes, among other techniques, the “shepherding pulse” to maintain pulse alignment.
Both method and technique are due to Yeh & Bergman. The shepherding technique relies
on the cross-phase modulation effect. Simulation of this technique involves the numerical
evaluation of simultaneous coupled nonlinear Schridinger equations. Yeh & Bergman used
the split-Fourier method. We are able to solve the coupled equations using approximation
methods. Although limitations in computer memory precluded our simulating over optical
fiber distances greater than 10 km, we are able to confirm that a shepherding pulse will (1)
decrease the bandwidth and heighten the amplitude of shepherded pulses; and (2) align to a
time slot shepherded pulses propagating before and after that time slot. We also show that
the effect is due to the greater amplitude of the shepherding pulse. These results are
obtained within an analysis of the more general relations of dispersive effects, the nonlinear
Schrédinger equation and cross-phase modulation.

Dispersive Relations:
The dispersive properties of optical fibers are characterized as follows. It is well

known that the group velocity, Vys is: Vv, = ‘:—(: and the phase velocity, v,, is:
Vo = % = const., so that:
dkvy) av
e A

In the case of a linear dispersive transmission line, the equation of motion is:

2 2
%-—vﬁéx—?+w§A=O,

with dispersion relation:

O = O] +Vik* .

The phase velocity, v, and the group velocity, v,, are:

v(k) = % = %1/(03 V22,

dw vik
0 .
s dk @l +vik*

Fig. 12.1.1 shows the phase velocity and the group velocity as function of k£ and various
values of @,.
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Fig. 12.1.1. A. Phase velocity and B. group velocity as a function of & and various values of ,.
w
>f
2 . 5 d
2F
1 [] 5 2
1
0.5
k

[ ]

0.5 1 1.5
Fig. 12.1.2. The dispersion relation as a function of k and various values of .
Nonlinear Schrodinger Equation:

The nonlinear Schrodinger equation (NLS) describing soliton propagation in optical
fibers in one form is:

By setting A = G/F, where F is a real function, and using the Hirota special bilinear
operators defined:

D*(a.b) = (g ——;;—) alx,t)b(x,t), att=t;

DX(ab) = (?i——-;%) a(x,nHb(x,t), at xX=x,
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where m and n are positive integers, the following is obtained':

DG.F 1(D)GF GD)*.F| GGG*
i——+—= s—————r+t—=——=0.
F* 2| F* F F F F

Therefore, F and G will be solutions if they are chosen to satisfy:

(iD, + %Df)G.F =0, D)F.F=0.

A solution is found by expanding F and G as a power series which self-truncates resulting
in an exact two-soliton solution:

A1) = —;-;- = 4Exp[i’-] cosh[3x] + 3exp[4it]cosh[x]

2 |cosh[4x]+ 4 cosh[2x]+ 3cosh[4¢]
After some manipulation this can be simplified to*:

3+4cosh(2x — 8t) + cosh(4x — 64t)

A(x,t)=-12
D {3cosh(x —28¢) + cosh(3x — 361)}

Fig. 12.1.3 shows the two soliton solution at various time intervals in which a larger
amplitude wave catches a smaller amplitude wave, coalesces to form a single wave and then
moves away from the smaller wave.

-1 -u

w e o

-12 =10 = 2 -2 =10 -8 -6 -4 -2 2

2 L
/\ 1 \
e % x
8 -6 -8 -2
A

! cf. Remoissenet, M., Waves Called Solitons: Concepts and Experiments, Springer, New York, 1994, p.
223.
? Drazin, P.G. & Johnson, R.S., Solitons: An Introduction, Cambridge U. Press, 1989.

172



6 8 10 12

E

Fig. 12.1.3 Two-soliton solution in which a larger amplitude wave catches a smaller amplitude wave (A
and B), coalesces (C), and then moves away from the smaller amplitude wave (D, E).

The N-soliton solution is>:

A(x,t) = ——25: n*sech? {n(x -4’ ¥ xn}

n=1

=h
17.5
15
12.5

10

-2 2 L] 6 -2 2 L] 6

3 Drazin, P.G. & Johﬁson, R.S., Solitons: An Introduction, Cambridge U. Press, 1989, p. 79.
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C

Fig. 12.1.4. Three soliton solution with (A) A(x,0) = -12 sech® x; (B) t = 0.05; (C) t = 0.2.

The interaction of two solitons is shown in Fig. 12.1.5, in which |A(x,?)| satisfies
the NLS:

iA+A_+AAl =0,

and with:

A(x,0) = 2 {exp[i(%—é)] sech(x —5)+ exp[—-i(x —215)] sech(x — 15)}.
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Power

Fig. 12.1.5A Interaction of 2 solitons: distance 0-5.
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Fig. 12.1.5B Interaction of 2 solitons: distance 3-5.
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Distance

Fig. 12.1.5C Interaction of 2 solitons: distance 5-7.

Cross-Phase Modulation:
The coupled nonlinear Schrodinger equations which described the cross-phase

modulation effect are*:

JA, 1 dA, 1 1. J%A. 2 X ,
—§ZL+77!+50‘/'AJ =§B2,- a;zl"y IA,-i +22|Am|2 A j=123,..M
&

m# j

where

A{z,1) is the slowly varying amplitude of the j’th wave;
v,; is the group velocity;

,sz is the dispersion coefficient;

o;is the absorption coefficient;

;. ) ] )
Y= ciad is the nonlinear index coefficient;
CA g

A o is the effective core area;

4 Agrawal, G.P., Phys. Rev. Lett., 59, 880, 1987.
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= 3.2 x 107" cm?W for silica fibers;

@ is the carrier frequency of the j’th wave;
cis the speed of light; and
z is the direction of propagation along the fiber.

By using the normalization coefficients:

T T
d. = (vgl —vxl)
v VeV
E=——
LDl
T2
Ly =2
D1 |BZj|
and setting:
A.(z, L
u;(7,€) [ ’(; I)Jxexplia’ Dlﬂ
0j
1
v (k)
TZ
L. =0
7 1B,
gives’:
.auj _ Sgn(ﬁZj)LDl aZuj .dlj auj LDl
179—5—— 2L, or ITOLDIE L exp( o LDI§)|u| +2’§Jexp -0 Lm§)|um|
where

T, is the pulse width,

P ; 1s the incident optical power of the jth beam,

d is the walk-off parameter between beam 1 and beam j and describes how fast a given
pulse in beam j passes through the pulse in beam 1.

% Yeh, C. & Bergman, L., Pulse shepherding in nonlinear fiber optics. J. Appl. Phys., 80, 3174-3178,
1996;

Yeh, C. & Bergman, L., Enhanced pulse compression in nonlinear fiber by a WDM optical pulse. Phys.

Rev. E., to appear February, 1998.
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The walk-off length

|°~1

Lyaj = |d..

Y

is the distance for which the faster moving pulse (e.g., in beam j) walks through the slower
moving pulse in beam 1. The nonlinear interaction between the two pulses occurs over this
length.

S )L
Fig.s 12.1.6A-E show cross-phase modulation with ﬂ(zﬂz—’-)——?}- forbeamk 16 X

Dj
that for beam y; and with Ly for beam k 16 x that for beam y. The reduction of the

NLj
bandwidth and the heightening of the shepherded pulses #1 and #2 is clearly seen in Fig.s
12.1.6D and 12.1.6E.

sgn{ B, )L
Fig.s 12.1.7A-D show cross-phase modulation with —g——(—ﬁ—ﬁ—ﬂ for beam £ 4 X
Dj

that for beam y; Ly, for beam k 4 X that for beam y and k is 2 x amplitude of pulses #1
'NLj

and #2. The “shepherding” of the pulses #1 and #2 toward alignment in Fig.s 12.1.7C and

12.1.7D is clearly seen. It should be realized that computer memory restrictions limited the

simulation only to 10 km distances. Further alignment is to be expected over longer

distances.

Sgn (ﬁz j )Lm

Dj

Fig.s 12.1.8 A-D show cross-phase modulation with for beam k = that

for beam y; Ln for beam k = that for beam y and k is 2 X amplitude of pulses #1 and #2.
‘NLj

Again, the “shepherding” of the pulses #1 and #2 toward alignment in Fig.s 12.1.8C and

12.1.8D is clearly seen. Further alignment is to be expected over longer distances.

As the simulations represented in Fig.s 12.1.8 showed the shepherding effect with

only a difference in amplitude between the shepherding and the shepherded pulses, we
attribute control of the effect to that parameter.
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Shepherd Pulse

2
1.5
1
0.5 Fower
0.5
82%1071?
0.2
-1x10~1t
0.3
Dist ¢
istance 0.2 Pime
0.1 1x107?
0 2x107!
. _ sgn(By )L : Ly,
Fig. 12.1.6A. Shepherd pulse with —————— for beam £ is 16 x that for beam y; and —— for beam

Dj ‘NLj
k is 16 x that for beam y. Distance in km.
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Shepherd Pulse: 0 and 0.2 km
3

11 11

ax10”t 1x10” ax10”tt

sgn(f,; )L L

——(—2—'—)ﬂforbeamkis16xthatforbeamy;and DL for beam
Dj NLj

k is 16 x that for beam y. Thicker line shows the commencing pulse.

-2x10"

Fig. 12.1.6B. Shepherd pulse with

shepherd Pulse: 0 and 0.5 km
.8 F

L

=11 =11

-2x10 -1%10 1x1074? 2x1071?
) . Sgn(ﬁz j )Lm . L,
Fig. 12.1.6C. Shepherd pulse with ——————— for beam £ is 16 x that for beam y; and for beam
'Dj 'NLj

k is 16 x that for beam y. Thicker line shows the commencing pulse.
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Pulse#li: 0 and 5 km

1.

-1x10711 1x107t?

sgn(pB,; )L L

———L—Zi)iforbeamkis 16 x that for beam y; and —2- for beam k is
'Dj 'NLj

16 x that for beam y. Thicker line shows the commencing pulse.

—2x10"1! 2x10~11

Fig. 12.1.6D. Pulse #1 with

Pulse#2: 0 and 5 km
1.

"t

—2x107? -1

-1x%10 1x107! 2x10~M
sgn(f,; )L L
Fig. 12.1.6E. Pulse #2 with #’1 for beam k is 16 X that for beam y; and —2% for beam k is
Dj ‘NLj

16 x that for beam y. Thicker line shows the commencing pulse.
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Shepherd Pulse

1
e, 0.75
N‘Hhﬁ “:
e - 0.5
. I 0.25 Power
10
0
-11
8 -1x10
-5x107?
&
Dist ¢
istance g mime
5x10722
2
1x107
(1]
. : Sgn(ﬁzi)Lm . Ly, .
Fig. 12.1.7A. Shepherd pulse with ————— for beam k is 4 X that for beam y; for beam £ is
‘Dj 'NLj

4 x that for beam y and k is 2 X amplitude of pulses #1 and #2. Distance in km.
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Shepherd Pulse: 0 and 3 km

-1x10"11 1x10712 2x10-1!

. . Sgn(ﬁzj )Lm . L, .
Fig. 12.1.7B. Shepherd pulse with ———————— for beam k is 4 X that for beam y; —— for beam £ is

Dj 'NLj
4 x that for beam y and k is 2 x amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.

-2x10711

Pﬁlse #1: 0 and 10 km

-2x1071! -1x10712 1x107? 2x10™1?

sgn(pB,; )L L

——L;)ﬂ for beam k is 4 x that for beam y; —2L for beam k is 4 X
Dj NLj

that for beam y and k is 2 X amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.

Fig. 12.1.7C. Pulse #1 with
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Pulse #2: 0 and 10 km

=11 -11 -11 =11

-2x10 -1%10 1x10

2X10

Sgn(ﬂz j )Lm . Ly, .

———— for beam £ is 4 x that for beam y; for beam £ is 4 X
Dj ‘NLj

that for beam y and k is 2 x amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.

Fig. 12.1.7D. Pulse #2 with
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Shepherd Pulse

Sgn(ﬁz j )Lm Ly,

Fig. 12.1.8A. Shepherd pulse with —————— for beam £ = that for beam y;
Dj 'NLj
for beam y and k is 2 x amplitude of pulses #1 and #2. Distance in km.

for beam k = that
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Shepherd Pulse: 0 and 10 km
4

-2x1072  —1.5x107M S1x107!! —sx107? sx1071? 1x10°1!
. . Sg“(ﬁzj)l'm ' Ly,
Fig. 12.1.8B. Shepherd pulse with —————— for beam & = that for beam y; for beam k = that

'Dj 'NLj
for beam y and k is 2 x amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.

Pulse #1: 0 and 10 km

=11 =11

-12

=11

-1.5x10 -1x10 -5x10~12 5x10 1x10

. _ sgn(By; )Ly, Ly,
Fig. 12.1.8C. Pulse #1 with ————— for beam k = that for beam y; 3 for beam k = that for
Dj 'NLj

beam y and k is 2 x amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.
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Pulse #2: 0 and 10 km
1}

L 2 ] L L 1 1

-1.5x107Y  ax107Mt -5x10"12 5x10~12 1x10°2?

sgn(B,; )L L

——-(—2—1)—0—1 for beam k = that for beam y; —2-- for beam k = that for
'Dj 'NLj

beam y and k is 2 x amplitude of pulses #1 and #2. Thicker line shows the commencing pulse.

Fig. 12.1.8D. Pulse #2 with
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12.2 Pulse Compression Effects.

In this section we confirm that: (1) a shepherd pulse, although energy will not be
exchanged between the beams, will enhance the compression of co-propagating beams at
different wavelengths if those beams are in the anomalous dispersion region; (2) unlike
SPM and GVD, in the case of CPM, in the presence of a shepherding pulse compression
will occur for soliton orders << 1; (3) if the primary pulse is in the normal dispersion
region, a dark soliton is generated rather than pulse compression; (4) time-alignment of
copropagating beams. Successful generation of time-aligned pulses on BPWD beams is
crucial to the realization of ultra-high data rate BPWD single fiber systems.

Cross-Phase Modulation®:

Cross-Phase modulation (CPM) effects are caused by the intensity dependence of
optical fiber’s refractive index. The mechanism of CPM pulse compression can be
compared and contrasted with that of soliton compression, which involves higher-order
solitons resulting from self-phase modulation (SPM) and anomalous group-velocity
dispersion (GVD)’. CPM compression takes place for pulses on different wavelength
beams.

The coupled nonlinear Schrodinger equations which described the cross-phase
modulation effect are®:

JA, 1 dA. 1 1. J%A, 2 U
—t _a,A,=_ﬁ2.-—f—y(A. +22|Am| A, Jj=123,..M
ko vy o 277 277 o 4 nei '

where

A(z,t) is the slowly varying amplitude of the j’th wave;
v,; is the group velocity;

ﬁzj is the dispersion coefficient;
ais the absorption coefficient;

;. . . .
Y= %, is the nonlinear index coefficient;
CA 5

A ” is the effective core area;
n, = 3.2 x 10" cm?*/W for silica fibers;

@) is the carrier frequency of the j’th wave;
c is the speed of light; and
z is the direction of propagation along the fiber.

By using the normalization coefficients:

¢ Agrawal, G.P., Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 59, 880-883,
1987.

7 Mollenauer, L.F. Stolen, R.H., Gordon, J.P. & Tomlinson, W.J., Opt. Lett., 8, 289, 1983;
Nakatsuka, H., Grischkowsky, D. & Balant, A.C., Phys. Rev. Lett., 47, 910, 1981;
Tomlinson, W.J., Stolen, R.H. & Shank, C.V., J. Opt. Soc. Am., B1, 139, 1984,
Tomlinson, W.J. & Knox, W.H., J. Opt. Soc. Am., B4, 1404, 1987.

8 Agrawal, G.P., Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 59, 880-
883, 1987.
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.G, i
z — L, =
F 2L, o T, "or

m#]

O _ sgn(B,, )Ly, *u, d; M, L, [
'NLj

exp( aLD1§)|ul +22exp —at, Ly, E)u |j|uj

where

T, is the pulse width,

P is the incident optical power of the jth beam,

d is the walk-off parameter between beam 1 and beam j and describes how fast a given
pulse in beam j passes through the pulse in beam 1.

The walk-off length
T,
Lyapy = I—T

Y

% Yeh, C. & Bergman, L., Pulse shepherding in nonlinear fiber optics. J. Appl. Phys., 80, 3174-3178,
1996;
Yeh, C. & Bergman, L., Enhanced pulse compression in nonlinear fiber by a WDM optical pulse. Phys.
Rev. E., to appear February, 1998.
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is the distance for which the faster moving pulse (e.g., in beam j) walks through the slower
moving pulse in beam 1. The nonlinear interaction between the two pulses occurs over this
length. Furthermore, for CPM to be significant, the group velocity mismatch between the
beams must be near zero.

In the case of SPM and GVD, I;3ulse compression will occur when the soliton order,
N, is larger than 1 but not less than 1.”” However, in the case of CPM, in the presence of a
shepherding pulse compression will occur for N << 1. When the shepherding pulse order,
N,, is greater than the primary pulse order, N,, there is even greater compression (see Fig.

8).

The following Fig.s 12.2.1-4 are based on a shepherd pulse of 20 psec. and 2 other
pulses of 60 psec. duration. The amplitude of the shepherd pulse is 3 and that of the two
other pulses is 0.1. The Figures 12.2.1-4 then only differ in the sign of the dispersion
coefficient. It should be noted for positive dispersion (i.e., normal dispersion region or
positive GVD region) in the case of the primary pulse (Fig.s 12.2.2, 12.2.4, 12.2.5,
12.2.10 and 12.2.13) a black soliton results. For pulse compression to occur, the primary
compressed pulses must be in the negative dispersion (i.e., anomalous dispersion region or
negative GVD region). Figures 12.2.1, 12.2.3, 12.2.6, 12.2.7, 12.2.8, 12.2.9, 12.2.11
and 12.2.12 exhibited such compression for primary pulses in the anomalous dispersion
region.

10 Agrawal, G.P., Nonlinear Fiber Optics, Academic Press, NY, 1989,
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Pulse ¥l (-,-,+)

- —1x107t? 1x107M 2x1071

1D.

Pulse #2 (-,-,4)

-2x10

=11 -11 «11

-1x10 1x10

1E.

~2x10 2x1071

Shepherd Pulse (~.~.+#), 0 & 5 km

-12 =12 -12 ~312 -11

-sx1071? —ax1071? c2x10 2x107'? gx1077 ex10

Fig. 12.2.1. A & D: Pulse #1, B & E: Pulse #2, C &F. Shepherd Pulse. Parameters for Pulse #1 and #2:
Amplitude: 0.1, dispersion coefficient 8, = -2. Parameters for Shepherd Pulse: Amplitude 3, dispersion
coefficient B,= +2. After Ref'’, Fig. 1.

1'Yeh, C., Bergman, L., Morookian, J. & Monacos, S., Generation of time-aligned pulses on wavelength
division multiplexed beams in a nonlinear fiber. Manuscript, 1998.
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Pulsebl (+,+=), 0 & 5 lm

-1 ~11 -3l =11

—2x10 -1x10 1Xx10 2x10
.
Fig. 2D.
Pulsed2 (+,+,=), 0 & 5 km
~2x1071! —1x1071 1x10t? 2x107M!

Fig. 2E.

Shepherd Pulse (+,+.=), 0 & 0.2 km

. .
2x10"*7 gx107*? -2

Fig. 2F.

-12

,
-2 ax10

=12 gx10

-6X10 6x10

Fig 12.2.2. A & D: Pulse #1, B & E: Pulse #2, C &F. Shepherd Pulse. Parameters for Pulse #1 and #2:
Amplitude: 0.1, dispersion coefficient 8, = +2. Parameters for Shepherd Pulse: Amplitude 3, dispersion
coefficient B,= -2. After Ref'. Fig. 1.
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Pulse#l (-,-,=), 0 & 5 km

—2x1071? ax1071? 1x1071 2x1071!

Fig. 3D.

Pulse#2 (-,-,-), 0 & S km

=11

=11

—1x107M 1x10-12 2x10

Fig. 3E.

~2%x10

Shepherd pulse (-,-.-), 0 & 0.2 km

-2 -1 ax107t? 2x107*? gx107'? ex107*?

Fig. 3F.

~-6x10 -3x10

Fig.12.2.3. A & D: Pulse #1, B & E: Pulse #2, C &F. Shepherd Pulse. Parameters for Pulse #1 and #2:
Amplitude: 0.1, dispersion coefficient B, = -2. Parameters for Shepherd Pulse: Amplitude 3, dispersion
coefficient B,= -2. After Ref'!, Fig. 1.
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Pulsefl (+,+,+), 0 & 5 km
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.
Fig. 4D.
Pulse#2 (+,4,+), 0 & 5 km
—2x107M! —ix107M 1x1074? 2x1071?
.
Fig. 4E.
Shepherd Pulse (+.+.+), 0 & 5 km
-6x10727 —ex1071? —2x10712 2x107*? gx1072? gx1071?
.
Fig. 4F.

Fig. 12.2.4. A & D: Pulse #1, B & E: Pulse #2, C &F. Shepherd Pulse. Parameters for Pulse #1 and #2:
Amplitude: 0.1, dispersion coefficient 8,= +2. Parameters for Shepherd Pulse: Amplitude 3, dispersion
coefficient B,= +2. After Ref'!, Fig. 1.
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Senerated Pulse, 0.5 km, +2, -2
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Fig. 5C.
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Fig. 5D.

Fig.1112.2.5. A & C: Generated Pulses, 8, = +2. B & E: Shepherd Pulse, amplitude 5 andf, = -2. After
Ref™", Fig. 2.
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Generated Pulse, 0.5 km, -1, -2
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Fig. 12.2.6. A & C: Generated Pulses, 8, = -1. B & E: Shepherd Pulse, amplitude 5 andf, = -2.

Ref'!, Fig. 2.
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Generated Pulse,
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Fig. 12.2.7. A & C: Generated Pulses, 8, = -1.5. B & E: Shepherd Pulse, amplitude 5 andB, = -2. After

Ref'!, Fig. 2.
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Primary Pulse (1.7).(-2.-2) 0 & 0.1 ¥km .
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=11

Fig. 12.2.8. A & C: Primary Pulse, Amplitude = 1, B, = -2. B & D: Shepherd Pulse: Amplitude = 7, B, = -
2. After Ref'?. Fig. 2.

2 Yeh, C. & Bergman, L.A., Enhanced pulse compression in nonlinear fiber by a WDM optical pulse.
Phys. Rev. E, to appear in the Feb. 1998 issue.
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Primary Pulse (2.5).(-2,-2) 0 & ¢ km
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Fig. 12.2.9. A & C: Primary Pulse, Amplitude = 2, 8, = -2. B & D: Shepherd Pulse: Amplitude = 5, B, = -
2. After Ref'2.
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Primary Pulse (0.1.,3) (+2,42)
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Primary Pulse (0.1.3).(+2,+42) 0 & 5 km
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Fig. 12.2.10. A & C: Primary Pulse, Amplitude = 0.1, 8, = +2. B & D: Shepherd Pulse: Amplitude = 3,
B, = +2. After Ref'Z, Fig. 5.
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Primary Pulse (0.1,3).(-2.-2) 0 & 5 km
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Fig. 12.2.11. A & C: Primary Pulse, Amplitude = 0.1, 8, = -2. B & D: Shepherd Pulse: Amplitude = 3, B,

= -2. After Ref'2. Fig. 5.
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Primary Pulse (0.1.3) (-2,+2)
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Primary Pulse (0.1,.3).(-2,.+2) 0 & 5 km
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Fig. 12.2.12 A & C: Primary Pulse, Amplitude = 0.1, 8, = -2. B & D: Shepherd Pulse: Amplitude = 3, 8,

= +2. After Ref'. Fig. 5.
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Primary Pulse (0.1,.3),(+2.-2) 0 & 5 km
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Fig. 12.2.13. A & C: Primary Pulse, Amplitude = 0.1, 8, = +2. B & D: Shepherd Pulse: Amplitude = 3,

B, = -2. After Ref'?. Fig. 5.
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13.0 Summary recommendations.
The major recommendations of this study are:

» The present work supports the adoption of a two-stage hierarchy of codes. At the first
stage, orthogonal codes define the microchannel or user, identified by a first (temporal)
matched filter. Once a code is identified by this filter, a second (temporal) matched filter
identifies the BPSK or pulse-position-modulated data with error correction, hence error-
correcting codes are required for the second stage. The recommendations of this study are
that congruence codes be used as orthogonal codes (hyperbolic, quadratic, cubic and
quartic) and Lexicographic codes for error correction codes.

« Besides a hierarchical backbone topology, a multidimensional coding scheme intermixing
CMDA, TDMA and WDM provides the possibility of the highest data rates.

« These recommended techniques provide signal spreading techniques, but they are spread
time techniques, as opposed to spread spectrum techniques.

» A major part of this study addressed the impact of symmetry principles on code design to
achieve optimum properties. This study provides many examples of heretofore unknown
symmetries underlying code design. Future work will address the use of symmetry in
designing optimum codes.
The unique approaches taken in this study were:

(1) spread time techniques (as opposed to spread spectrum techniques), which permit the
highest data rates with the highest S/N and exploit the availability of optical pulse
technology and the recent capabilities in pulse crafting and holography;

(2) Hierarchical backbone communications link topologies, with multidimensional coding
schemes;

(3) the incorporation of WDM as well as wavelet diversity with respect to scale and
translation when possible;

(4) the use of symmetry principles for insight into optimum coding principles;

(5) Lexicographic ordering for perfect code gchcration.

(6) These techniques will be dependent on accurate pulse alignment and pulse compression
capability. Bit parallel wavelength division (BPWD) and the concept of the shepherding
pulse are promising techniques addressing these issues.

The results of a successful implementation of these recommendations will be:

» maximum permissible data rate transmissions permitted by the latest device technologies
and multiple band optical fiber channels;

«» multi-dimensional coding based on time, as well as frequency, hopping principles;
« the techniques of CDMA and TDMA linked for optimum system usage ;
« spread time principles, as opposed to spread spectrum principles, as the method of choice

for the highest data rate communications.
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